Optimal. Leaf size=27 \[ e^{-4+x}+\frac {\left (e^{2/3}+e^3\right ) x}{4 \left (-\frac {9}{2}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 6, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {27, 12, 6741, 6742, 2194} \begin {gather*} e^{x-4}-\frac {9 e^{2/3} \left (1+e^{7/3}\right )}{4 (9-2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2194
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-9 e^{2/3}-9 e^3+e^{-4+x} \left (162-72 x+8 x^2\right )}{2 (-9+2 x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-9 e^{2/3}-9 e^3+e^{-4+x} \left (162-72 x+8 x^2\right )}{(-9+2 x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-9 e^{2/3} \left (1+e^{7/3}\right )+e^{-4+x} \left (162-72 x+8 x^2\right )}{(9-2 x)^2} \, dx\\ &=\frac {1}{2} \int \left (2 e^{-4+x}-\frac {9 e^{2/3} \left (1+e^{7/3}\right )}{(-9+2 x)^2}\right ) \, dx\\ &=-\frac {9 e^{2/3} \left (1+e^{7/3}\right )}{4 (9-2 x)}+\int e^{-4+x} \, dx\\ &=e^{-4+x}-\frac {9 e^{2/3} \left (1+e^{7/3}\right )}{4 (9-2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 1.15 \begin {gather*} \frac {2 e^x+\frac {9 \left (e^{14/3}+e^7\right )}{-18+4 x}}{2 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.07 \begin {gather*} \frac {4 \, {\left (2 \, x - 9\right )} e^{\left (x - 4\right )} + 9 \, e^{3} + 9 \, e^{\frac {2}{3}}}{4 \, {\left (2 \, x - 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 32, normalized size = 1.19 \begin {gather*} \frac {8 \, x e^{x} + 9 \, e^{7} + 9 \, e^{\frac {14}{3}} - 36 \, e^{x}}{4 \, {\left (2 \, x e^{4} - 9 \, e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 24, normalized size = 0.89
method | result | size |
risch | \(\frac {9 \,{\mathrm e}^{3}}{8 \left (x -\frac {9}{2}\right )}+\frac {9 \,{\mathrm e}^{\frac {2}{3}}}{8 \left (x -\frac {9}{2}\right )}+{\mathrm e}^{x -4}\) | \(24\) |
derivativedivides | \(\frac {9 \,{\mathrm e}^{3}}{4 \left (2 x -9\right )}+\frac {9 \,{\mathrm e}^{\frac {2}{3}}}{4 \left (2 x -9\right )}+{\mathrm e}^{x -4}\) | \(28\) |
default | \(\frac {9 \,{\mathrm e}^{3}}{4 \left (2 x -9\right )}+\frac {9 \,{\mathrm e}^{\frac {2}{3}}}{4 \left (2 x -9\right )}+{\mathrm e}^{x -4}\) | \(28\) |
norman | \(\frac {2 x \,{\mathrm e}^{x -4}-9 \,{\mathrm e}^{x -4}+\frac {9 \,{\mathrm e}^{3}}{4}+\frac {9 \,{\mathrm e}^{\frac {2}{3}}}{4}}{2 x -9}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4 \, {\left (x^{2} - 9 \, x\right )} e^{x}}{4 \, x^{2} e^{4} - 36 \, x e^{4} + 81 \, e^{4}} - \frac {81 \, e^{\frac {1}{2}} E_{2}\left (-x + \frac {9}{2}\right )}{2 \, {\left (2 \, x - 9\right )}} + \frac {9 \, e^{3}}{4 \, {\left (2 \, x - 9\right )}} + \frac {9 \, e^{\frac {2}{3}}}{4 \, {\left (2 \, x - 9\right )}} - 324 \, \int \frac {e^{x}}{8 \, x^{3} e^{4} - 108 \, x^{2} e^{4} + 486 \, x e^{4} - 729 \, e^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 22, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{x-4}+\frac {\frac {9\,{\mathrm {e}}^3}{2}+\frac {9\,{\mathrm {e}}^{2/3}}{2}}{4\,x-18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.81 \begin {gather*} e^{x - 4} - \frac {- 9 e^{3} - 9 e^{\frac {2}{3}}}{8 x - 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________