Optimal. Leaf size=33 \[ \left (1-e^3\right ) \left (-x+\log \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 40, normalized size of antiderivative = 1.21, number of steps used = 5, number of rules used = 4, integrand size = 172, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6688, 12, 6742, 6684} \begin {gather*} \left (1-e^3\right ) \log \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )-\left (1-e^3\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (1-e^3\right ) \left (-1-x^2+2 x (1-\log (2+\log (2)))+4 \log (2+\log (2))-(-1+x) \log (x) (x+2 \log (2+\log (2)))+(x+2 \log (2+\log (2))) \log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )}{(x+2 \log (2+\log (2))) \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )} \, dx\\ &=\left (1-e^3\right ) \int \frac {-1-x^2+2 x (1-\log (2+\log (2)))+4 \log (2+\log (2))-(-1+x) \log (x) (x+2 \log (2+\log (2)))+(x+2 \log (2+\log (2))) \log \left (\frac {x}{2}+\log (2+\log (2))\right )}{(x+2 \log (2+\log (2))) \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )} \, dx\\ &=\left (1-e^3\right ) \int \left (-1+\frac {-1+2 x+x \log (x)+4 \log (2+\log (2))+2 \log (x) \log (2+\log (2))}{(x+2 \log (2+\log (2))) \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )}\right ) \, dx\\ &=-\left (\left (1-e^3\right ) x\right )+\left (1-e^3\right ) \int \frac {-1+2 x+x \log (x)+4 \log (2+\log (2))+2 \log (x) \log (2+\log (2))}{(x+2 \log (2+\log (2))) \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )} \, dx\\ &=-\left (\left (1-e^3\right ) x\right )+\left (1-e^3\right ) \log \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 31, normalized size = 0.94 \begin {gather*} \left (-1+e^3\right ) \left (x-\log \left (x+x \log (x)-\log \left (\frac {x}{2}+\log (2+\log (2))\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 34, normalized size = 1.03 \begin {gather*} x e^{3} - {\left (e^{3} - 1\right )} \log \left (-x \log \relax (x) - x + \log \left (\frac {1}{2} \, x + \log \left (\log \relax (2) + 2\right )\right )\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 54, normalized size = 1.64 \begin {gather*} x e^{3} - e^{3} \log \left (x \log \relax (x) + x + \log \relax (2) - \log \left (x + 2 \, \log \left (\log \relax (2) + 2\right )\right )\right ) - x + \log \left (x \log \relax (x) + x + \log \relax (2) - \log \left (x + 2 \, \log \left (\log \relax (2) + 2\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 34, normalized size = 1.03
method | result | size |
norman | \(\left ({\mathrm e}^{3}-1\right ) x +\left (-{\mathrm e}^{3}+1\right ) \ln \left (x +x \ln \relax (x )-\ln \left (\ln \left (\ln \relax (2)+2\right )+\frac {x}{2}\right )\right )\) | \(34\) |
risch | \(x \,{\mathrm e}^{3}-x -\ln \left (\ln \left (\ln \left (\ln \relax (2)+2\right )+\frac {x}{2}\right )-\left (\ln \relax (x )+1\right ) x \right ) {\mathrm e}^{3}+\ln \left (\ln \left (\ln \left (\ln \relax (2)+2\right )+\frac {x}{2}\right )-\left (\ln \relax (x )+1\right ) x \right )\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 37, normalized size = 1.12 \begin {gather*} x {\left (e^{3} - 1\right )} - {\left (e^{3} - 1\right )} \log \left (-x \log \relax (x) - x - \log \relax (2) + \log \left (x + 2 \, \log \left (\log \relax (2) + 2\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \relax (x)\,\left ({\mathrm {e}}^3\,\left (x-x^2\right )-x+x^2\right )-2\,x-\ln \left (\ln \relax (2)+2\right )\,\left (\ln \relax (x)\,\left ({\mathrm {e}}^3\,\left (2\,x-2\right )-2\,x+2\right )-2\,x+{\mathrm {e}}^3\,\left (2\,x-4\right )+4\right )+\ln \left (\frac {x}{2}+\ln \left (\ln \relax (2)+2\right )\right )\,\left (x\,{\mathrm {e}}^3-x+\ln \left (\ln \relax (2)+2\right )\,\left (2\,{\mathrm {e}}^3-2\right )\right )-{\mathrm {e}}^3\,\left (x^2-2\,x+1\right )+x^2+1}{x^2\,\ln \relax (x)+\ln \left (\ln \relax (2)+2\right )\,\left (2\,x+2\,x\,\ln \relax (x)\right )-\ln \left (\frac {x}{2}+\ln \left (\ln \relax (2)+2\right )\right )\,\left (x+2\,\ln \left (\ln \relax (2)+2\right )\right )+x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 39, normalized size = 1.18 \begin {gather*} x \left (-1 + e^{3}\right ) - \left (-1 + e\right ) \left (1 + e + e^{2}\right ) \log {\left (- x \log {\relax (x )} - x + \log {\left (\frac {x}{2} + \log {\left (\log {\relax (2 )} + 2 \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________