Optimal. Leaf size=23 \[ \frac {e^{e^{x^2}}}{\left (-\frac {5 x}{-1+e^3}+\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.92, antiderivative size = 144, normalized size of antiderivative = 6.26, number of steps used = 1, number of rules used = 1, integrand size = 180, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {2288} \begin {gather*} \frac {e^{e^{x^2}-x^2} \left (e^{x^2} \left (-e^9 x^2+3 e^6 x^2-3 e^3 x^2+x^2\right ) \log (x)+5 e^{x^2} \left (e^6 x^3-2 e^3 x^3+x^3\right )\right )}{x \left (125 x^4+75 \left (x^3-e^3 x^3\right ) \log (x)+15 \left (e^6 x^2-2 e^3 x^2+x^2\right ) \log ^2(x)+\left (1-e^3\right )^3 x \log ^3(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{e^{x^2}-x^2} \left (5 e^{x^2} \left (x^3-2 e^3 x^3+e^6 x^3\right )+e^{x^2} \left (x^2-3 e^3 x^2+3 e^6 x^2-e^9 x^2\right ) \log (x)\right )}{x \left (125 x^4+75 \left (x^3-e^3 x^3\right ) \log (x)+15 \left (x^2-2 e^3 x^2+e^6 x^2\right ) \log ^2(x)+\left (1-e^3\right )^3 x \log ^3(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 30, normalized size = 1.30 \begin {gather*} \frac {e^{e^{x^2}} \left (-1+e^3\right )^2}{\left (5 x+\log (x)-e^3 \log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 47, normalized size = 2.04 \begin {gather*} \frac {{\left (e^{6} - 2 \, e^{3} + 1\right )} e^{\left (e^{\left (x^{2}\right )}\right )}}{{\left (e^{6} - 2 \, e^{3} + 1\right )} \log \relax (x)^{2} + 25 \, x^{2} - 10 \, {\left (x e^{3} - x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left ({\left (x^{2} e^{9} - 3 \, x^{2} e^{6} + 3 \, x^{2} e^{3} - x^{2}\right )} e^{\left (x^{2}\right )} \log \relax (x) + {\left (5 \, x + 3\right )} e^{6} - {\left (10 \, x + 3\right )} e^{3} - 5 \, {\left (x^{3} e^{6} - 2 \, x^{3} e^{3} + x^{3}\right )} e^{\left (x^{2}\right )} + 5 \, x - e^{9} + 1\right )} e^{\left (e^{\left (x^{2}\right )}\right )}}{125 \, x^{4} - {\left (x e^{9} - 3 \, x e^{6} + 3 \, x e^{3} - x\right )} \log \relax (x)^{3} + 15 \, {\left (x^{2} e^{6} - 2 \, x^{2} e^{3} + x^{2}\right )} \log \relax (x)^{2} - 75 \, {\left (x^{3} e^{3} - x^{3}\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 30, normalized size = 1.30
method | result | size |
risch | \(\frac {\left ({\mathrm e}^{6}-2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{{\mathrm e}^{x^{2}}}}{\left (\ln \relax (x ) {\mathrm e}^{3}-\ln \relax (x )-5 x \right )^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 46, normalized size = 2.00 \begin {gather*} -\frac {{\left (e^{6} - 2 \, e^{3} + 1\right )} e^{\left (e^{\left (x^{2}\right )}\right )}}{10 \, x {\left (e^{3} - 1\right )} \log \relax (x) - {\left (e^{6} - 2 \, e^{3} + 1\right )} \log \relax (x)^{2} - 25 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.79, size = 26, normalized size = 1.13 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{x^2}}\,{\left ({\mathrm {e}}^3-1\right )}^2}{{\left (5\,x-\ln \relax (x)\,\left ({\mathrm {e}}^3-1\right )\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 61, normalized size = 2.65 \begin {gather*} \frac {\left (- 2 e^{3} + 1 + e^{6}\right ) e^{e^{x^{2}}}}{25 x^{2} - 10 x e^{3} \log {\relax (x )} + 10 x \log {\relax (x )} - 2 e^{3} \log {\relax (x )}^{2} + \log {\relax (x )}^{2} + e^{6} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________