Optimal. Leaf size=17 \[ e^{-1+e^{4 x} x^2} x^8 \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 49, normalized size of antiderivative = 2.88, number of steps used = 1, number of rules used = 1, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {2288} \begin {gather*} \frac {e^{e^{4 x} x^2+4 x-1} x^6 \left (2 x^4+x^3\right )}{2 e^{4 x} x^2+e^{4 x} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-1+4 x+e^{4 x} x^2} x^6 \left (x^3+2 x^4\right )}{e^{4 x} x+2 e^{4 x} x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 1.00 \begin {gather*} e^{-1+e^{4 x} x^2} x^8 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 20, normalized size = 1.18 \begin {gather*} x^{4} e^{\left (e^{\left (4 \, x + 2 \, \log \relax (x)\right )} + 4 \, \log \relax (x) - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (4 \, x^{3} + {\left (2 \, x^{4} + x^{3}\right )} e^{\left (2 \, x + \log \left (x^{2} e^{\left (2 \, x\right )}\right )\right )}\right )} e^{\left (e^{\left (2 \, x + \log \left (x^{2} e^{\left (2 \, x\right )}\right )\right )} + 4 \, \log \relax (x) - 1\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.53, size = 185, normalized size = 10.88
method | result | size |
risch | \(x^{8} {\mathrm e}^{x^{2} {\mathrm e}^{4 x} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2}}{2}} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )}{2}} {\mathrm e}^{\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{2}}{2}} {\mathrm e}^{\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{2}}{2}} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{3}}{2}}-1}\) | \(185\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 15, normalized size = 0.88 \begin {gather*} x^{8} e^{\left (x^{2} e^{\left (4 \, x\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.59, size = 15, normalized size = 0.88 \begin {gather*} x^8\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{4\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 14, normalized size = 0.82 \begin {gather*} x^{8} e^{x^{2} e^{4 x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________