Optimal. Leaf size=26 \[ \left (-3+e^{\frac {e^{21+x}}{\left (3+e^x\right ) x}-x}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 30.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {e^{21+x}-3 x^2-e^x x^2}{3 x+e^x x}} \left (e^{21+x} \left (18+6 e^x-18 x\right )+54 x^2+36 e^x x^2+6 e^{2 x} x^2\right )+\exp \left (\frac {2 \left (e^{21+x}-3 x^2-e^x x^2\right )}{3 x+e^x x}\right ) \left (-18 x^2-12 e^x x^2-2 e^{2 x} x^2+e^{21+x} \left (-6-2 e^x+6 x\right )\right )}{9 x^2+6 e^x x^2+e^{2 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-2 x} \left (e^{\frac {2 e^{21+x}}{3 x+e^x x}}-3 e^{\frac {e^{21+x}+3 x^2+e^x x^2}{3 x+e^x x}}\right ) \left (-e^{21+2 x}+3 e^{21+x} (-1+x)-9 x^2-6 e^x x^2-e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2} \, dx\\ &=2 \int \frac {e^{-2 x} \left (e^{\frac {2 e^{21+x}}{3 x+e^x x}}-3 e^{\frac {e^{21+x}+3 x^2+e^x x^2}{3 x+e^x x}}\right ) \left (-e^{21+2 x}+3 e^{21+x} (-1+x)-9 x^2-6 e^x x^2-e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2} \, dx\\ &=2 \int \left (-\frac {e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} \left (3 e^{21+x}+e^{21+2 x}-3 e^{21+x} x+9 x^2+6 e^x x^2+e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2}+\frac {3 \exp \left (-2 x+\frac {e^{21+x}+3 x^2+e^x x^2}{\left (3+e^x\right ) x}\right ) \left (3 e^{21+x}+e^{21+2 x}-3 e^{21+x} x+9 x^2+6 e^x x^2+e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} \left (3 e^{21+x}+e^{21+2 x}-3 e^{21+x} x+9 x^2+6 e^x x^2+e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2} \, dx\right )+6 \int \frac {\exp \left (-2 x+\frac {e^{21+x}+3 x^2+e^x x^2}{\left (3+e^x\right ) x}\right ) \left (3 e^{21+x}+e^{21+2 x}-3 e^{21+x} x+9 x^2+6 e^x x^2+e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2} \, dx\\ &=-\left (2 \int \left (\frac {9 e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right )^2 x}-\frac {3 e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} (1+x)}{\left (3+e^x\right ) x^2}+\frac {e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} \left (e^{21}+x^2\right )}{x^2}\right ) \, dx\right )+6 \int \frac {e^{\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}} \left (3 e^{21+x}+e^{21+2 x}-3 e^{21+x} x+9 x^2+6 e^x x^2+e^{2 x} x^2\right )}{\left (3+e^x\right )^2 x^2} \, dx\\ &=-\left (2 \int \frac {e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} \left (e^{21}+x^2\right )}{x^2} \, dx\right )+6 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} (1+x)}{\left (3+e^x\right ) x^2} \, dx+6 \int \left (\frac {9 e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right )^2 x}-\frac {3 e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}} (1+x)}{\left (3+e^x\right ) x^2}+\frac {e^{\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}} \left (e^{21}+x^2\right )}{x^2}\right ) \, dx-18 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right )^2 x} \, dx\\ &=-\left (2 \int \left (e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}+\frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{x^2}\right ) \, dx\right )+6 \int \left (\frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right ) x^2}+\frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right ) x}\right ) \, dx+6 \int \frac {e^{\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}} \left (e^{21}+x^2\right )}{x^2} \, dx-18 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right )^2 x} \, dx-18 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}} (1+x)}{\left (3+e^x\right ) x^2} \, dx+54 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right )^2 x} \, dx\\ &=-\left (2 \int e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} \, dx\right )-2 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{x^2} \, dx+6 \int \left (e^{\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}+\frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{x^2}\right ) \, dx+6 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right ) x^2} \, dx+6 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right ) x} \, dx-18 \int \left (\frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right ) x^2}+\frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right ) x}\right ) \, dx-18 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right )^2 x} \, dx+54 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right )^2 x} \, dx\\ &=-\left (2 \int e^{-2 x+\frac {2 e^{21+x}}{3 x+e^x x}} \, dx\right )-2 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{x^2} \, dx+6 \int e^{\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}} \, dx+6 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{x^2} \, dx+6 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right ) x^2} \, dx+6 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right ) x} \, dx-18 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right ) x^2} \, dx-18 \int \frac {e^{21-2 x+\frac {2 e^{21+x}}{3 x+e^x x}}}{\left (3+e^x\right )^2 x} \, dx-18 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right ) x} \, dx+54 \int \frac {e^{21+\frac {e^{21+x}-3 x^2-e^x x^2}{\left (3+e^x\right ) x}}}{\left (3+e^x\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 59, normalized size = 2.27 \begin {gather*} -e^{\frac {e^{21} \left (1-\frac {6}{3+e^x}\right )}{x}-2 x} \left (-e^{\frac {e^{21}}{x}}+6 e^{\frac {3 e^{21}}{\left (3+e^x\right ) x}+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 79, normalized size = 3.04 \begin {gather*} -6 \, e^{\left (-\frac {3 \, x^{2} e^{21} + {\left (x^{2} - e^{21}\right )} e^{\left (x + 21\right )}}{3 \, x e^{21} + x e^{\left (x + 21\right )}}\right )} + e^{\left (-\frac {2 \, {\left (3 \, x^{2} e^{21} + {\left (x^{2} - e^{21}\right )} e^{\left (x + 21\right )}\right )}}{3 \, x e^{21} + x e^{\left (x + 21\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.38, size = 64, normalized size = 2.46
method | result | size |
risch | \({\mathrm e}^{-\frac {2 \left ({\mathrm e}^{x} x^{2}+3 x^{2}-{\mathrm e}^{x +21}\right )}{x \left (3+{\mathrm e}^{x}\right )}}-6 \,{\mathrm e}^{-\frac {{\mathrm e}^{x} x^{2}+3 x^{2}-{\mathrm e}^{x +21}}{x \left (3+{\mathrm e}^{x}\right )}}\) | \(64\) |
norman | \(\frac {{\mathrm e}^{x} x \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{x +21}-2 \,{\mathrm e}^{x} x^{2}-6 x^{2}}{{\mathrm e}^{x} x +3 x}}-18 x \,{\mathrm e}^{\frac {{\mathrm e}^{x} {\mathrm e}^{21}-{\mathrm e}^{x} x^{2}-3 x^{2}}{{\mathrm e}^{x} x +3 x}}+3 x \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{x +21}-2 \,{\mathrm e}^{x} x^{2}-6 x^{2}}{{\mathrm e}^{x} x +3 x}}-6 \,{\mathrm e}^{x} x \,{\mathrm e}^{\frac {{\mathrm e}^{x} {\mathrm e}^{21}-{\mathrm e}^{x} x^{2}-3 x^{2}}{{\mathrm e}^{x} x +3 x}}}{x \left (3+{\mathrm e}^{x}\right )}\) | \(151\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 82, normalized size = 3.15 \begin {gather*} -{\left (6 \, e^{\left (\frac {x e^{x}}{e^{x} + 3} + \frac {3 \, x}{e^{x} + 3} + \frac {e^{\left (x + 21\right )}}{x e^{x} + 3 \, x}\right )} - e^{\left (\frac {2 \, e^{\left (x + 21\right )}}{x e^{x} + 3 \, x}\right )}\right )} e^{\left (-\frac {2 \, x e^{x}}{e^{x} + 3} - \frac {6 \, x}{e^{x} + 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.95, size = 103, normalized size = 3.96 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{21}\,{\mathrm {e}}^x}{3\,x+x\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {2\,x^2\,{\mathrm {e}}^x}{3\,x+x\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {6\,x^2}{3\,x+x\,{\mathrm {e}}^x}}\,\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{21}\,{\mathrm {e}}^x}{3\,x+x\,{\mathrm {e}}^x}}-6\,{\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^x}{3\,x+x\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {3\,x^2}{3\,x+x\,{\mathrm {e}}^x}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 61, normalized size = 2.35 \begin {gather*} e^{\frac {2 \left (- x^{2} e^{x} - 3 x^{2} + e^{21} e^{x}\right )}{x e^{x} + 3 x}} - 6 e^{\frac {- x^{2} e^{x} - 3 x^{2} + e^{21} e^{x}}{x e^{x} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________