Optimal. Leaf size=24 \[ \frac {x^3 (3+x) \left (3+2 x+x^2\right )}{\left (-e^4+x\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 109, normalized size of antiderivative = 4.54, number of steps used = 2, number of rules used = 1, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2074} \begin {gather*} x^4+\left (5+2 e^4\right ) x^3+\left (9+10 e^4+3 e^8\right ) x^2+\left (9+18 e^4+15 e^8+4 e^{12}\right ) x-\frac {e^8 \left (27+36 e^4+25 e^8+6 e^{12}\right )}{e^4-x}+\frac {e^{12} \left (9+9 e^4+5 e^8+e^{12}\right )}{\left (e^4-x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (9 \left (1+\frac {1}{9} e^4 \left (18+15 e^4+4 e^8\right )\right )+\frac {2 e^{12} \left (9+9 e^4+5 e^8+e^{12}\right )}{\left (e^4-x\right )^3}-\frac {e^8 \left (27+36 e^4+25 e^8+6 e^{12}\right )}{\left (e^4-x\right )^2}+2 \left (9+10 e^4+3 e^8\right ) x+3 \left (5+2 e^4\right ) x^2+4 x^3\right ) \, dx\\ &=\frac {e^{12} \left (9+9 e^4+5 e^8+e^{12}\right )}{\left (e^4-x\right )^2}-\frac {e^8 \left (27+36 e^4+25 e^8+6 e^{12}\right )}{e^4-x}+\left (9+18 e^4+15 e^8+4 e^{12}\right ) x+\left (9+10 e^4+3 e^8\right ) x^2+\left (5+2 e^4\right ) x^3+x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 88, normalized size = 3.67 \begin {gather*} \frac {-15 e^{24}-54 e^8 (-1+x) x-27 e^4 x^2+10 e^{20} (-5+3 x)+e^{12} \left (-27+108 x-50 x^2\right )+e^{16} \left (-54+100 x-15 x^2\right )+x^3 \left (9+9 x+5 x^2+x^3\right )}{\left (e^4-x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 92, normalized size = 3.83 \begin {gather*} \frac {x^{6} + 5 \, x^{5} + 9 \, x^{4} + 9 \, x^{3} - 18 \, x^{2} e^{4} + 10 \, {\left (x - 2\right )} e^{20} - {\left (5 \, x^{2} - 40 \, x + 27\right )} e^{16} - 2 \, {\left (10 \, x^{2} - 27 \, x + 9\right )} e^{12} - 9 \, {\left (3 \, x^{2} - 4 \, x\right )} e^{8} - 5 \, e^{24}}{x^{2} - 2 \, x e^{4} + e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, x^{6} + 15 \, x^{5} + 18 \, x^{4} + 9 \, x^{3} - {\left (6 \, x^{5} + 25 \, x^{4} + 36 \, x^{3} + 27 \, x^{2}\right )} e^{4}}{x^{3} - 3 \, x^{2} e^{4} + 3 \, x e^{8} - e^{12}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.21
method | result | size |
norman | \(\frac {x^{6}+5 x^{5}+9 x^{4}+9 x^{3}}{\left ({\mathrm e}^{4}-x \right )^{2}}\) | \(29\) |
gosper | \(\frac {x^{3} \left (x^{3}+5 x^{2}+9 x +9\right )}{{\mathrm e}^{8}-2 x \,{\mathrm e}^{4}+x^{2}}\) | \(33\) |
risch | \(4 x \,{\mathrm e}^{12}+3 x^{2} {\mathrm e}^{8}+2 x^{3} {\mathrm e}^{4}+x^{4}+15 x \,{\mathrm e}^{8}+10 x^{2} {\mathrm e}^{4}+5 x^{3}+18 x \,{\mathrm e}^{4}+9 x^{2}+9 x +\frac {\left (6 \,{\mathrm e}^{20}+25 \,{\mathrm e}^{16}+36 \,{\mathrm e}^{12}+27 \,{\mathrm e}^{8}\right ) x -5 \,{\mathrm e}^{24}-20 \,{\mathrm e}^{20}-27 \,{\mathrm e}^{16}-18 \,{\mathrm e}^{12}}{{\mathrm e}^{8}-2 x \,{\mathrm e}^{4}+x^{2}}\) | \(104\) |
default | \(58 x \,{\mathrm e}^{12}+3 x^{2} {\mathrm e}^{8}+2 x^{3} {\mathrm e}^{4}+x^{4}+15 x \,{\mathrm e}^{8}-54 \,{\mathrm e}^{4} {\mathrm e}^{8} x +10 x^{2} {\mathrm e}^{4}+5 x^{3}+18 x \,{\mathrm e}^{4}+9 x^{2}+9 x -\frac {\left (\munderset {\textit {\_R} =\RootOf \left (-{\mathrm e}^{12}+3 \textit {\_Z} \,{\mathrm e}^{8}-3 \textit {\_Z}^{2} {\mathrm e}^{4}+\textit {\_Z}^{3}\right )}{\sum }\frac {\left (-18 \,{\mathrm e}^{12} {\mathrm e}^{4}+6 \textit {\_R} \,{\mathrm e}^{20}+25 \textit {\_R} \,{\mathrm e}^{16}-15 \,{\mathrm e}^{8} {\mathrm e}^{12}+27 \textit {\_R} \,{\mathrm e}^{8}-4 \,{\mathrm e}^{24}+36 \textit {\_R} \,{\mathrm e}^{12}-9 \,{\mathrm e}^{12}\right ) \ln \left (x -\textit {\_R} \right )}{{\mathrm e}^{8}-2 \textit {\_R} \,{\mathrm e}^{4}+\textit {\_R}^{2}}\right )}{3}\) | \(173\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 94, normalized size = 3.92 \begin {gather*} x^{4} + x^{3} {\left (2 \, e^{4} + 5\right )} + x^{2} {\left (3 \, e^{8} + 10 \, e^{4} + 9\right )} + x {\left (4 \, e^{12} + 15 \, e^{8} + 18 \, e^{4} + 9\right )} + \frac {x {\left (6 \, e^{20} + 25 \, e^{16} + 36 \, e^{12} + 27 \, e^{8}\right )} - 5 \, e^{24} - 20 \, e^{20} - 27 \, e^{16} - 18 \, e^{12}}{x^{2} - 2 \, x e^{4} + e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.56, size = 138, normalized size = 5.75 \begin {gather*} x^3\,\left (2\,{\mathrm {e}}^4+5\right )-x\,\left (36\,{\mathrm {e}}^4-4\,{\mathrm {e}}^{12}+3\,{\mathrm {e}}^4\,\left (25\,{\mathrm {e}}^4+12\,{\mathrm {e}}^8-3\,{\mathrm {e}}^4\,\left (6\,{\mathrm {e}}^4+15\right )-18\right )+3\,{\mathrm {e}}^8\,\left (6\,{\mathrm {e}}^4+15\right )-9\right )-\frac {18\,{\mathrm {e}}^{12}+27\,{\mathrm {e}}^{16}+20\,{\mathrm {e}}^{20}+5\,{\mathrm {e}}^{24}-x\,\left (27\,{\mathrm {e}}^8+36\,{\mathrm {e}}^{12}+25\,{\mathrm {e}}^{16}+6\,{\mathrm {e}}^{20}\right )}{x^2-2\,{\mathrm {e}}^4\,x+{\mathrm {e}}^8}-x^2\,\left (\frac {25\,{\mathrm {e}}^4}{2}+6\,{\mathrm {e}}^8-\frac {3\,{\mathrm {e}}^4\,\left (6\,{\mathrm {e}}^4+15\right )}{2}-9\right )+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.53, size = 102, normalized size = 4.25 \begin {gather*} x^{4} + x^{3} \left (5 + 2 e^{4}\right ) + x^{2} \left (9 + 10 e^{4} + 3 e^{8}\right ) + x \left (9 + 18 e^{4} + 15 e^{8} + 4 e^{12}\right ) + \frac {x \left (27 e^{8} + 36 e^{12} + 25 e^{16} + 6 e^{20}\right ) - 5 e^{24} - 20 e^{20} - 27 e^{16} - 18 e^{12}}{x^{2} - 2 x e^{4} + e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________