Optimal. Leaf size=17 \[ e^5 (-3+x) (2+x) \log \left (\log \left ((-1+x)^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^5 \left (-12-2 x+2 x^2\right )+e^5 \left (1-3 x+2 x^2\right ) \log \left (1-2 x+x^2\right ) \log \left (\log \left (1-2 x+x^2\right )\right )}{(-1+x) \log \left (1-2 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^5 (-3+x) (2+x)}{(-1+x) \log \left ((-1+x)^2\right )}+e^5 (-1+2 x) \log \left (\log \left ((-1+x)^2\right )\right )\right ) \, dx\\ &=e^5 \int (-1+2 x) \log \left (\log \left ((-1+x)^2\right )\right ) \, dx+\left (2 e^5\right ) \int \frac {(-3+x) (2+x)}{(-1+x) \log \left ((-1+x)^2\right )} \, dx\\ &=e^5 \int \left (-\log \left (\log \left ((-1+x)^2\right )\right )+2 x \log \left (\log \left ((-1+x)^2\right )\right )\right ) \, dx+\left (2 e^5\right ) \int \left (-\frac {6}{(-1+x) \log \left ((-1+x)^2\right )}+\frac {x}{\log \left ((-1+x)^2\right )}\right ) \, dx\\ &=-\left (e^5 \int \log \left (\log \left ((-1+x)^2\right )\right ) \, dx\right )+\left (2 e^5\right ) \int \frac {x}{\log \left ((-1+x)^2\right )} \, dx+\left (2 e^5\right ) \int x \log \left (\log \left ((-1+x)^2\right )\right ) \, dx-\left (12 e^5\right ) \int \frac {1}{(-1+x) \log \left ((-1+x)^2\right )} \, dx\\ &=-\left (e^5 \operatorname {Subst}\left (\int \log \left (\log \left (x^2\right )\right ) \, dx,x,-1+x\right )\right )+\left (2 e^5\right ) \int \left (\frac {1}{\log \left ((-1+x)^2\right )}+\frac {-1+x}{\log \left ((-1+x)^2\right )}\right ) \, dx+\left (2 e^5\right ) \int x \log \left (\log \left ((-1+x)^2\right )\right ) \, dx-\left (12 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{x \log \left (x^2\right )} \, dx,x,-1+x\right )\\ &=e^5 (1-x) \log \left (\log \left ((-1+x)^2\right )\right )+\left (2 e^5\right ) \int \frac {1}{\log \left ((-1+x)^2\right )} \, dx+\left (2 e^5\right ) \int \frac {-1+x}{\log \left ((-1+x)^2\right )} \, dx+\left (2 e^5\right ) \int x \log \left (\log \left ((-1+x)^2\right )\right ) \, dx+\left (2 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log \left (x^2\right )} \, dx,x,-1+x\right )-\left (6 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left ((-1+x)^2\right )\right )\\ &=-6 e^5 \log \left (\log \left ((-1+x)^2\right )\right )+e^5 (1-x) \log \left (\log \left ((-1+x)^2\right )\right )+\left (2 e^5\right ) \int x \log \left (\log \left ((-1+x)^2\right )\right ) \, dx+\left (2 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log \left (x^2\right )} \, dx,x,-1+x\right )+\left (2 e^5\right ) \operatorname {Subst}\left (\int \frac {x}{\log \left (x^2\right )} \, dx,x,-1+x\right )+\frac {\left (e^5 (-1+x)\right ) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left ((-1+x)^2\right )\right )}{\sqrt {(-1+x)^2}}\\ &=-\frac {e^5 (1-x) \text {Ei}\left (\frac {1}{2} \log \left ((-1+x)^2\right )\right )}{\sqrt {(-1+x)^2}}-6 e^5 \log \left (\log \left ((-1+x)^2\right )\right )+e^5 (1-x) \log \left (\log \left ((-1+x)^2\right )\right )+e^5 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,(-1+x)^2\right )+\left (2 e^5\right ) \int x \log \left (\log \left ((-1+x)^2\right )\right ) \, dx+\frac {\left (e^5 (-1+x)\right ) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left ((-1+x)^2\right )\right )}{\sqrt {(-1+x)^2}}\\ &=-\frac {2 e^5 (1-x) \text {Ei}\left (\frac {1}{2} \log \left ((-1+x)^2\right )\right )}{\sqrt {(-1+x)^2}}-6 e^5 \log \left (\log \left ((-1+x)^2\right )\right )+e^5 (1-x) \log \left (\log \left ((-1+x)^2\right )\right )+e^5 \text {li}\left ((-1+x)^2\right )+\left (2 e^5\right ) \int x \log \left (\log \left ((-1+x)^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 18, normalized size = 1.06 \begin {gather*} e^5 (-6+(-1+x) x) \log \left (\log \left ((-1+x)^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 21, normalized size = 1.24 \begin {gather*} {\left (x^{2} - x - 6\right )} e^{5} \log \left (\log \left (x^{2} - 2 \, x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 46, normalized size = 2.71 \begin {gather*} x^{2} e^{5} \log \left (\log \left (x^{2} - 2 \, x + 1\right )\right ) - x e^{5} \log \left (\log \left (x^{2} - 2 \, x + 1\right )\right ) - 6 \, e^{5} \log \left (\log \left (x^{2} - 2 \, x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 47, normalized size = 2.76
method | result | size |
norman | \(-6 \,{\mathrm e}^{5} \ln \left (\ln \left (x^{2}-2 x +1\right )\right )+x^{2} {\mathrm e}^{5} \ln \left (\ln \left (x^{2}-2 x +1\right )\right )-x \,{\mathrm e}^{5} \ln \left (\ln \left (x^{2}-2 x +1\right )\right )\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 43, normalized size = 2.53 \begin {gather*} x^{2} e^{5} \log \relax (2) - x e^{5} \log \relax (2) + {\left (x^{2} e^{5} - x e^{5}\right )} \log \left (\log \left (x - 1\right )\right ) - 6 \, e^{5} \log \left (\log \left (x - 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.04, size = 22, normalized size = 1.29 \begin {gather*} -{\mathrm {e}}^5\,\ln \left (\ln \left (x^2-2\,x+1\right )\right )\,\left (-x^2+x+6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.61, size = 46, normalized size = 2.71 \begin {gather*} \left (x^{2} e^{5} - x e^{5} + \frac {e^{5}}{6}\right ) \log {\left (\log {\left (x^{2} - 2 x + 1 \right )} \right )} - \frac {37 e^{5} \log {\left (\log {\left (x^{2} - 2 x + 1 \right )} \right )}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________