Optimal. Leaf size=27 \[ \frac {5 \left (2+\left (1+x-x^2\right ) \log (3)\right )}{(1+x) \left (e^x+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10-20 x+\left (-5-10 x-10 x^2\right ) \log (3)+e^x \left (-20-10 x+\left (-5-20 x-5 x^2+5 x^3\right ) \log (3)\right )}{x^2+2 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (2 x+4 x^2+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10-20 x+\left (-5-10 x-10 x^2\right ) \log (3)+e^x \left (-20-10 x+\left (-5-20 x-5 x^2+5 x^3\right ) \log (3)\right )}{(1+x)^2 \left (e^x+x\right )^2} \, dx\\ &=\int \left (-\frac {5 \left (2-2 x+\log (3)+x^3 \log (3)-x^2 \log (9)\right )}{(1+x) \left (e^x+x\right )^2}+\frac {5 \left (-4-\log (3)-x^2 \log (3)+x^3 \log (3)-2 x (1+\log (9))\right )}{(1+x)^2 \left (e^x+x\right )}\right ) \, dx\\ &=-\left (5 \int \frac {2-2 x+\log (3)+x^3 \log (3)-x^2 \log (9)}{(1+x) \left (e^x+x\right )^2} \, dx\right )+5 \int \frac {-4-\log (3)-x^2 \log (3)+x^3 \log (3)-2 x (1+\log (9))}{(1+x)^2 \left (e^x+x\right )} \, dx\\ &=5 \int \left (\frac {-2+\log (3)}{(1+x)^2 \left (e^x+x\right )}+\frac {-2+\log (3)}{(1+x) \left (e^x+x\right )}-\frac {3 \log (3)}{e^x+x}+\frac {x \log (3)}{e^x+x}\right ) \, dx-5 \int \left (\frac {x^2 \log (3)}{\left (e^x+x\right )^2}-\frac {-4+\log (9)}{(1+x) \left (e^x+x\right )^2}-\frac {2 \left (1-\frac {\log (27)}{2}\right )}{\left (e^x+x\right )^2}-\frac {x \log (27)}{\left (e^x+x\right )^2}\right ) \, dx\\ &=-\left ((5 (2-\log (3))) \int \frac {1}{(1+x)^2 \left (e^x+x\right )} \, dx\right )-(5 (2-\log (3))) \int \frac {1}{(1+x) \left (e^x+x\right )} \, dx-(5 \log (3)) \int \frac {x^2}{\left (e^x+x\right )^2} \, dx+(5 \log (3)) \int \frac {x}{e^x+x} \, dx-(15 \log (3)) \int \frac {1}{e^x+x} \, dx-(5 (4-\log (9))) \int \frac {1}{(1+x) \left (e^x+x\right )^2} \, dx+(5 (2-\log (27))) \int \frac {1}{\left (e^x+x\right )^2} \, dx+(5 \log (27)) \int \frac {x}{\left (e^x+x\right )^2} \, dx\\ &=\frac {5 \log (27)}{e^x+x}-(5 (2-\log (3))) \int \frac {1}{(1+x)^2 \left (e^x+x\right )} \, dx-(5 (2-\log (3))) \int \frac {1}{(1+x) \left (e^x+x\right )} \, dx-(5 \log (3)) \int \frac {x^2}{\left (e^x+x\right )^2} \, dx+(5 \log (3)) \int \frac {x}{e^x+x} \, dx-(15 \log (3)) \int \frac {1}{e^x+x} \, dx-(5 (4-\log (9))) \int \frac {1}{(1+x) \left (e^x+x\right )^2} \, dx+(5 (2-\log (27))) \int \frac {1}{\left (e^x+x\right )^2} \, dx+(5 \log (27)) \int \frac {1}{\left (e^x+x\right )^2} \, dx+(5 \log (27)) \int \frac {1}{e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 49, normalized size = 1.81 \begin {gather*} -\frac {5 \left (2+\log (3)+x \log (3)-x^3 \log (3)+x^4 \log (3)-x^2 (2+\log (9))\right )}{(-1+x) (1+x)^2 \left (e^x+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 28, normalized size = 1.04 \begin {gather*} -\frac {5 \, {\left ({\left (x^{2} - x - 1\right )} \log \relax (3) - 2\right )}}{x^{2} + {\left (x + 1\right )} e^{x} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 32, normalized size = 1.19 \begin {gather*} -\frac {5 \, {\left (x^{2} \log \relax (3) - x \log \relax (3) - \log \relax (3) - 2\right )}}{x^{2} + x e^{x} + x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 31, normalized size = 1.15
method | result | size |
risch | \(-\frac {5 \left (x^{2} \ln \relax (3)-x \ln \relax (3)-\ln \relax (3)-2\right )}{\left (x +1\right ) \left ({\mathrm e}^{x}+x \right )}\) | \(31\) |
norman | \(\frac {5 \ln \relax (3) {\mathrm e}^{x}+10 x \ln \relax (3)+5 x \ln \relax (3) {\mathrm e}^{x}+10+5 \ln \relax (3)}{{\mathrm e}^{x} x +x^{2}+{\mathrm e}^{x}+x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 32, normalized size = 1.19 \begin {gather*} -\frac {5 \, {\left (x^{2} \log \relax (3) - x \log \relax (3) - \log \relax (3) - 2\right )}}{x^{2} + {\left (x + 1\right )} e^{x} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.97, size = 27, normalized size = 1.00 \begin {gather*} \frac {-\ln \left (243\right )\,x^2+\ln \left (243\right )\,x+\ln \left (243\right )+10}{\left (x+{\mathrm {e}}^x\right )\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 32, normalized size = 1.19 \begin {gather*} \frac {- 5 x^{2} \log {\relax (3 )} + 5 x \log {\relax (3 )} + 5 \log {\relax (3 )} + 10}{x^{2} + x + \left (x + 1\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________