Optimal. Leaf size=28 \[ 4+e^x+x-\frac {1}{4} (4-2 x) x^2-\frac {x}{3+2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {27, 12, 6742, 2194, 43} \begin {gather*} \frac {x^3}{2}-x^2+x+e^x+\frac {3}{2 (2 x+3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{2 (3+2 x)^2} \, dx\\ &=\frac {1}{2} \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{(3+2 x)^2} \, dx\\ &=\frac {1}{2} \int \left (2 e^x+\frac {12}{(3+2 x)^2}-\frac {12 x}{(3+2 x)^2}-\frac {13 x^2}{(3+2 x)^2}+\frac {20 x^3}{(3+2 x)^2}+\frac {12 x^4}{(3+2 x)^2}\right ) \, dx\\ &=-\frac {3}{3+2 x}-6 \int \frac {x}{(3+2 x)^2} \, dx+6 \int \frac {x^4}{(3+2 x)^2} \, dx-\frac {13}{2} \int \frac {x^2}{(3+2 x)^2} \, dx+10 \int \frac {x^3}{(3+2 x)^2} \, dx+\int e^x \, dx\\ &=e^x-\frac {3}{3+2 x}+6 \int \left (\frac {27}{16}-\frac {3 x}{4}+\frac {x^2}{4}+\frac {81}{16 (3+2 x)^2}-\frac {27}{4 (3+2 x)}\right ) \, dx-6 \int \left (-\frac {3}{2 (3+2 x)^2}+\frac {1}{2 (3+2 x)}\right ) \, dx-\frac {13}{2} \int \left (\frac {1}{4}+\frac {9}{4 (3+2 x)^2}-\frac {3}{2 (3+2 x)}\right ) \, dx+10 \int \left (-\frac {3}{4}+\frac {x}{4}-\frac {27}{8 (3+2 x)^2}+\frac {27}{8 (3+2 x)}\right ) \, dx\\ &=e^x+x-x^2+\frac {x^3}{2}+\frac {3}{2 (3+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 30, normalized size = 1.07 \begin {gather*} \frac {1}{2} \left (2 e^x+2 x-2 x^2+x^3+\frac {3}{3+2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 38, normalized size = 1.36 \begin {gather*} \frac {2 \, x^{4} - x^{3} - 2 \, x^{2} + 2 \, {\left (2 \, x + 3\right )} e^{x} + 6 \, x + 3}{2 \, {\left (2 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 38, normalized size = 1.36 \begin {gather*} \frac {2 \, x^{4} - x^{3} - 2 \, x^{2} + 4 \, x e^{x} + 6 \, x + 6 \, e^{x} + 3}{2 \, {\left (2 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 22, normalized size = 0.79
method | result | size |
risch | \(\frac {x^{3}}{2}-x^{2}+x +\frac {3}{4 \left (x +\frac {3}{2}\right )}+{\mathrm e}^{x}\) | \(22\) |
default | \(\frac {3}{2 \left (2 x +3\right )}+x -x^{2}+\frac {x^{3}}{2}+{\mathrm e}^{x}\) | \(24\) |
norman | \(\frac {x^{4}-x^{2}-\frac {x^{3}}{2}+2 \,{\mathrm e}^{x} x +3 \,{\mathrm e}^{x}-3}{2 x +3}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, x^{3} - x^{2} + x + \frac {4 \, {\left (x^{2} + 3 \, x\right )} e^{x}}{4 \, x^{2} + 12 \, x + 9} - \frac {9 \, e^{\left (-\frac {3}{2}\right )} E_{2}\left (-x - \frac {3}{2}\right )}{2 \, {\left (2 \, x + 3\right )}} + \frac {3}{2 \, {\left (2 \, x + 3\right )}} - 36 \, \int \frac {e^{x}}{8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 23, normalized size = 0.82 \begin {gather*} x+{\mathrm {e}}^x+\frac {3}{4\,x+6}-x^2+\frac {x^3}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.68 \begin {gather*} \frac {x^{3}}{2} - x^{2} + x + e^{x} + \frac {3}{4 x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________