Optimal. Leaf size=34 \[ 5-\frac {\log (5-i \pi -\log (5-\log (\log (2))))}{\log \left (\left (e^5-x\right )^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 36, normalized size of antiderivative = 1.06, number of steps used = 2, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {12, 6686} \begin {gather*} -\frac {\log (5-i \pi -\log (5-\log (\log (2))))}{\log \left (x^2-2 e^5 x+e^{10}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((2 \log (5-i \pi -\log (5-\log (\log (2))))) \int \frac {1}{\left (e^5-x\right ) \log ^2\left (e^{10}-2 e^5 x+x^2\right )} \, dx\right )\\ &=-\frac {\log (5-i \pi -\log (5-\log (\log (2))))}{\log \left (e^{10}-2 e^5 x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 32, normalized size = 0.94 \begin {gather*} -\frac {\log (5-i \pi -\log (5-\log (\log (2))))}{\log \left (\left (e^5-x\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 27, normalized size = 0.79 \begin {gather*} -\frac {\log \left (-\log \left (\log \left (\log \relax (2)\right ) - 5\right ) + 5\right )}{\log \left (x^{2} - 2 \, x e^{5} + e^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 27, normalized size = 0.79 \begin {gather*} -\frac {\log \left (-\log \left (\log \left (\log \relax (2)\right ) - 5\right ) + 5\right )}{\log \left (x^{2} - 2 \, x e^{5} + e^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 28, normalized size = 0.82
method | result | size |
risch | \(-\frac {\ln \left (-\ln \left (\ln \left (\ln \relax (2)\right )-5\right )+5\right )}{\ln \left ({\mathrm e}^{10}-2 x \,{\mathrm e}^{5}+x^{2}\right )}\) | \(28\) |
norman | \(-\frac {\ln \left (-\ln \left (\ln \left (\ln \relax (2)\right )-5\right )+5\right )}{\ln \left ({\mathrm e}^{10}-2 x \,{\mathrm e}^{5}+x^{2}\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 22, normalized size = 0.65 \begin {gather*} -\frac {\log \left (-\log \left (\log \left (\log \relax (2)\right ) - 5\right ) + 5\right )}{2 \, \log \left (x - e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.61, size = 27, normalized size = 0.79 \begin {gather*} -\frac {\ln \left (5-\ln \left (\ln \left (\ln \relax (2)\right )-5\right )\right )}{\ln \left (x^2-2\,{\mathrm {e}}^5\,x+{\mathrm {e}}^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 31, normalized size = 0.91 \begin {gather*} - \frac {\log {\left (- \log {\left (5 - \log {\left (\log {\relax (2 )} \right )} \right )} + 5 - i \pi \right )}}{\log {\left (x^{2} - 2 x e^{5} + e^{10} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________