Optimal. Leaf size=27 \[ \log \left (\frac {4 e^8 \left (5-e^4+x\right ) \log ^2(3) \log ^2(x)}{225 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 10, number of rules used = 8, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.195, Rules used = {6, 1593, 6688, 14, 36, 31, 29, 2302} \begin {gather*} -\log (x)+\log \left (x-e^4+5\right )+2 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 29
Rule 31
Rule 36
Rule 1593
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10+2 e^4-2 x+\left (5-e^4\right ) \log (x)}{\left (\left (-5+e^4\right ) x-x^2\right ) \log (x)} \, dx\\ &=\int \frac {-10+2 e^4-2 x+\left (5-e^4\right ) \log (x)}{\left (-5+e^4-x\right ) x \log (x)} \, dx\\ &=\int \frac {\frac {5-e^4}{-5+e^4-x}+\frac {2}{\log (x)}}{x} \, dx\\ &=\int \left (\frac {5-e^4}{\left (-5+e^4-x\right ) x}+\frac {2}{x \log (x)}\right ) \, dx\\ &=2 \int \frac {1}{x \log (x)} \, dx+\left (5-e^4\right ) \int \frac {1}{\left (-5+e^4-x\right ) x} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )-\int \frac {1}{-5+e^4-x} \, dx-\int \frac {1}{x} \, dx\\ &=-\log (x)+\log \left (5-e^4+x\right )+2 \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 0.70 \begin {gather*} -\log (x)+\log \left (5-e^4+x\right )+2 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 18, normalized size = 0.67 \begin {gather*} \log \left (x - e^{4} + 5\right ) - \log \relax (x) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 18, normalized size = 0.67 \begin {gather*} \log \left (x - e^{4} + 5\right ) - \log \relax (x) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 19, normalized size = 0.70
method | result | size |
norman | \(-\ln \relax (x )+2 \ln \left (\ln \relax (x )\right )+\ln \left ({\mathrm e}^{4}-x -5\right )\) | \(19\) |
risch | \(\ln \left (5-{\mathrm e}^{4}+x \right )-\ln \relax (x )+2 \ln \left (\ln \relax (x )\right )\) | \(19\) |
default | \(2 \ln \left (\ln \relax (x )\right )+\frac {5 \ln \relax (x )}{{\mathrm e}^{4}-5}-\frac {5 \ln \left (5-{\mathrm e}^{4}+x \right )}{{\mathrm e}^{4}-5}-\frac {{\mathrm e}^{4} \ln \relax (x )}{{\mathrm e}^{4}-5}+\frac {{\mathrm e}^{4} \ln \left (5-{\mathrm e}^{4}+x \right )}{{\mathrm e}^{4}-5}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 18, normalized size = 0.67 \begin {gather*} \log \left (x - e^{4} + 5\right ) - \log \relax (x) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.82, size = 18, normalized size = 0.67 \begin {gather*} \ln \left (x-{\mathrm {e}}^4+5\right )+2\,\ln \left (\ln \relax (x)\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 102, normalized size = 3.78 \begin {gather*} \left (-5 + e^{4}\right ) \left (\frac {\log {\left (x - \frac {e^{8}}{2 \left (-5 + e^{4}\right )} - \frac {e^{4}}{2} - \frac {25}{2 \left (-5 + e^{4}\right )} + \frac {5}{2} + \frac {5 e^{4}}{-5 + e^{4}} \right )}}{-5 + e^{4}} - \frac {\log {\left (x - \frac {e^{4}}{2} - \frac {5 e^{4}}{-5 + e^{4}} + \frac {25}{2 \left (-5 + e^{4}\right )} + \frac {5}{2} + \frac {e^{8}}{2 \left (-5 + e^{4}\right )} \right )}}{-5 + e^{4}}\right ) + 2 \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________