Optimal. Leaf size=23 \[ -5-(5+x+(4-x) (5+x)) \log (x-\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25+25 x+x^2-x^3+\left (-2 x^3+2 x^2 \log (x)\right ) \log (x-\log (x))}{-x^2+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25+25 x+x^2-x^3+\left (-2 x^3+2 x^2 \log (x)\right ) \log (x-\log (x))}{x (-x+\log (x))} \, dx\\ &=\int \left (\frac {25-25 x-x^2+x^3}{x (x-\log (x))}+2 x \log (x-\log (x))\right ) \, dx\\ &=2 \int x \log (x-\log (x)) \, dx+\int \frac {25-25 x-x^2+x^3}{x (x-\log (x))} \, dx\\ &=2 \int x \log (x-\log (x)) \, dx+\int \left (-\frac {25}{x-\log (x)}+\frac {25}{x (x-\log (x))}-\frac {x}{x-\log (x)}+\frac {x^2}{x-\log (x)}\right ) \, dx\\ &=2 \int x \log (x-\log (x)) \, dx-25 \int \frac {1}{x-\log (x)} \, dx+25 \int \frac {1}{x (x-\log (x))} \, dx-\int \frac {x}{x-\log (x)} \, dx+\int \frac {x^2}{x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 21, normalized size = 0.91 \begin {gather*} -25 \log (x-\log (x))+x^2 \log (x-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 13, normalized size = 0.57 \begin {gather*} {\left (x^{2} - 25\right )} \log \left (x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.91 \begin {gather*} x^{2} \log \left (x - \log \relax (x)\right ) - 25 \, \log \left (x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.96
method | result | size |
risch | \(x^{2} \ln \left (x -\ln \relax (x )\right )-25 \ln \left (\ln \relax (x )-x \right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 13, normalized size = 0.57 \begin {gather*} {\left (x^{2} - 25\right )} \log \left (x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 21, normalized size = 0.91 \begin {gather*} x^2\,\ln \left (x-\ln \relax (x)\right )-25\,\ln \left (\ln \relax (x)-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 17, normalized size = 0.74 \begin {gather*} x^{2} \log {\left (x - \log {\relax (x )} \right )} - 25 \log {\left (- x + \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________