Optimal. Leaf size=20 \[ x \log \left (2 \left (1-x-\frac {4+x}{4 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 15, normalized size of antiderivative = 0.75, number of steps used = 16, number of rules used = 8, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {6688, 1657, 634, 618, 204, 628, 2523, 12} \begin {gather*} x \log \left (-2 x-\frac {2}{x}+\frac {3}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 1657
Rule 2523
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 \left (-1+x^2\right )}{4-3 x+4 x^2}+\log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )\right ) \, dx\\ &=4 \int \frac {-1+x^2}{4-3 x+4 x^2} \, dx+\int \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right ) \, dx\\ &=x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )+4 \int \left (\frac {1}{4}-\frac {8-3 x}{4 \left (4-3 x+4 x^2\right )}\right ) \, dx-\int \frac {4 \left (-1+x^2\right )}{4-3 x+4 x^2} \, dx\\ &=x+x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )-4 \int \frac {-1+x^2}{4-3 x+4 x^2} \, dx-\int \frac {8-3 x}{4-3 x+4 x^2} \, dx\\ &=x+x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )+\frac {3}{8} \int \frac {-3+8 x}{4-3 x+4 x^2} \, dx-4 \int \left (\frac {1}{4}-\frac {8-3 x}{4 \left (4-3 x+4 x^2\right )}\right ) \, dx-\frac {55}{8} \int \frac {1}{4-3 x+4 x^2} \, dx\\ &=x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )+\frac {3}{8} \log \left (4-3 x+4 x^2\right )+\frac {55}{4} \operatorname {Subst}\left (\int \frac {1}{-55-x^2} \, dx,x,-3+8 x\right )+\int \frac {8-3 x}{4-3 x+4 x^2} \, dx\\ &=\frac {1}{4} \sqrt {55} \tan ^{-1}\left (\frac {3-8 x}{\sqrt {55}}\right )+x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )+\frac {3}{8} \log \left (4-3 x+4 x^2\right )-\frac {3}{8} \int \frac {-3+8 x}{4-3 x+4 x^2} \, dx+\frac {55}{8} \int \frac {1}{4-3 x+4 x^2} \, dx\\ &=\frac {1}{4} \sqrt {55} \tan ^{-1}\left (\frac {3-8 x}{\sqrt {55}}\right )+x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )-\frac {55}{4} \operatorname {Subst}\left (\int \frac {1}{-55-x^2} \, dx,x,-3+8 x\right )\\ &=x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 15, normalized size = 0.75 \begin {gather*} x \log \left (\frac {3}{2}-\frac {2}{x}-2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (-\frac {4 \, x^{2} - 3 \, x + 4}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (-\frac {4 \, x^{2} - 3 \, x + 4}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 19, normalized size = 0.95
method | result | size |
norman | \(x \ln \left (\frac {-4 x^{2}+3 x -4}{2 x}\right )\) | \(19\) |
risch | \(x \ln \left (\frac {-4 x^{2}+3 x -4}{2 x}\right )\) | \(19\) |
default | \(-x \ln \relax (2)+x \ln \left (\frac {-4 x^{2}+3 x -4}{x}\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 24, normalized size = 1.20 \begin {gather*} -x \log \relax (2) + x \log \left (-4 \, x^{2} + 3 \, x - 4\right ) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.58, size = 18, normalized size = 0.90 \begin {gather*} x\,\ln \left (-\frac {2\,x^2-\frac {3\,x}{2}+2}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.75 \begin {gather*} x \log {\left (\frac {- 2 x^{2} + \frac {3 x}{2} - 2}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________