Optimal. Leaf size=18 \[ \frac {10 \log (2 \log (4))}{3 x (x+\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 4, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 6688, 6687} \begin {gather*} \frac {10 \log (\log (16))}{3 x (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (16)) \int \frac {-10-20 x-10 \log (x)}{3 x^4+6 x^3 \log (x)+3 x^2 \log ^2(x)} \, dx\\ &=\log (\log (16)) \int \frac {10 (-1-2 x-\log (x))}{3 x^2 (x+\log (x))^2} \, dx\\ &=\frac {1}{3} (10 \log (\log (16))) \int \frac {-1-2 x-\log (x)}{x^2 (x+\log (x))^2} \, dx\\ &=\frac {10 \log (\log (16))}{3 x (x+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 16, normalized size = 0.89 \begin {gather*} \frac {10 \log (\log (16))}{3 x (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 17, normalized size = 0.94 \begin {gather*} \frac {10 \, \log \left (4 \, \log \relax (2)\right )}{3 \, {\left (x^{2} + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 17, normalized size = 0.94 \begin {gather*} \frac {10 \, \log \left (4 \, \log \relax (2)\right )}{3 \, {\left (x^{2} + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 1.11
method | result | size |
risch | \(\frac {\frac {20 \ln \relax (2)}{3}+\frac {10 \ln \left (\ln \relax (2)\right )}{3}}{\left (x +\ln \relax (x )\right ) x}\) | \(20\) |
norman | \(\frac {\frac {20 \ln \relax (2)}{3}+\frac {10 \ln \left (\ln \relax (2)\right )}{3}}{\left (x +\ln \relax (x )\right ) x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 0.94 \begin {gather*} \frac {10 \, \log \left (4 \, \log \relax (2)\right )}{3 \, {\left (x^{2} + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.66, size = 18, normalized size = 1.00 \begin {gather*} \frac {10\,\ln \left (\ln \left (16\right )\right )}{3\,x\,\ln \relax (x)+3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 1.22 \begin {gather*} \frac {10 \log {\left (\log {\relax (2 )} \right )} + 20 \log {\relax (2 )}}{3 x^{2} + 3 x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________