Optimal. Leaf size=24 \[ \frac {5 (-3+x)}{2 \left (3+e^2\right ) x \log ^2(15)}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 5, number of rules used = 4, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {6, 12, 186, 43} \begin {gather*} \log (x)-\frac {15}{2 \left (3+e^2\right ) x \log ^2(15)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 43
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15+\left (6 x+2 e^2 x\right ) \log ^2(15)}{\left (6+2 e^2\right ) x^2 \log ^2(15)} \, dx\\ &=\frac {\int \frac {15+\left (6 x+2 e^2 x\right ) \log ^2(15)}{x^2} \, dx}{2 \left (3+e^2\right ) \log ^2(15)}\\ &=\frac {\int \frac {15+2 \left (3+e^2\right ) x \log ^2(15)}{x^2} \, dx}{2 \left (3+e^2\right ) \log ^2(15)}\\ &=\frac {\int \left (\frac {15}{x^2}+\frac {2 \left (3+e^2\right ) \log ^2(15)}{x}\right ) \, dx}{2 \left (3+e^2\right ) \log ^2(15)}\\ &=-\frac {15}{2 \left (3+e^2\right ) x \log ^2(15)}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 0.88 \begin {gather*} -\frac {15}{2 \left (3+e^2\right ) x \log ^2(15)}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 34, normalized size = 1.42 \begin {gather*} \frac {2 \, {\left (x e^{2} + 3 \, x\right )} \log \left (15\right )^{2} \log \relax (x) - 15}{2 \, {\left (x e^{2} + 3 \, x\right )} \log \left (15\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 27, normalized size = 1.12 \begin {gather*} \frac {2 \, \log \left (15\right )^{2} \log \left ({\left | x \right |}\right ) - \frac {15}{x {\left (e^{2} + 3\right )}}}{2 \, \log \left (15\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 19, normalized size = 0.79
method | result | size |
norman | \(-\frac {15}{2 \ln \left (15\right )^{2} \left ({\mathrm e}^{2}+3\right ) x}+\ln \relax (x )\) | \(19\) |
default | \(\frac {2 \ln \left (15\right )^{2} \left ({\mathrm e}^{2}+3\right ) \ln \relax (x )-\frac {15}{x}}{2 \ln \left (15\right )^{2} \left ({\mathrm e}^{2}+3\right )}\) | \(31\) |
risch | \(-\frac {15}{2 \left (\ln \relax (3)+\ln \relax (5)\right )^{2} x \left ({\mathrm e}^{2}+3\right )}+\frac {\ln \relax (x ) \ln \relax (5)^{2}}{\left (\ln \relax (3)+\ln \relax (5)\right )^{2}}+\frac {2 \ln \relax (x ) \ln \relax (5) \ln \relax (3)}{\left (\ln \relax (3)+\ln \relax (5)\right )^{2}}+\frac {\ln \relax (x ) \ln \relax (3)^{2}}{\left (\ln \relax (3)+\ln \relax (5)\right )^{2}}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 26, normalized size = 1.08 \begin {gather*} \frac {2 \, \log \left (15\right )^{2} \log \relax (x) - \frac {15}{x {\left (e^{2} + 3\right )}}}{2 \, \log \left (15\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 25, normalized size = 1.04 \begin {gather*} \ln \relax (x)-\frac {15}{x\,\left (2\,{\mathrm {e}}^2\,{\ln \left (15\right )}^2+6\,{\ln \left (15\right )}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 34, normalized size = 1.42 \begin {gather*} \frac {2 \left (3 + e^{2}\right ) \log {\left (15 \right )}^{2} \log {\relax (x )} - \frac {15}{x}}{6 \log {\left (15 \right )}^{2} + 2 e^{2} \log {\left (15 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________