Optimal. Leaf size=22 \[ -5+\frac {2 \left (4+\left (6+e^{6+2 x}\right ) x\right )}{3 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 19, normalized size of antiderivative = 0.86, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 14, 2194} \begin {gather*} \frac {2}{3} e^{2 x+6}+\frac {8}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-8+4 e^{6+2 x} x^2}{x^2} \, dx\\ &=\frac {1}{3} \int \left (4 e^{6+2 x}-\frac {8}{x^2}\right ) \, dx\\ &=\frac {8}{3 x}+\frac {4}{3} \int e^{6+2 x} \, dx\\ &=\frac {2}{3} e^{6+2 x}+\frac {8}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 0.95 \begin {gather*} \frac {4}{3} \left (\frac {1}{2} e^{6+2 x}+\frac {2}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 15, normalized size = 0.68 \begin {gather*} \frac {2 \, {\left (x e^{\left (2 \, x + 6\right )} + 4\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 15, normalized size = 0.68 \begin {gather*} \frac {2 \, {\left (x e^{\left (2 \, x + 6\right )} + 4\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.68
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{2 x +6}}{3}+\frac {8}{3 x}\) | \(15\) |
default | \(\frac {2 \,{\mathrm e}^{6} {\mathrm e}^{2 x}}{3}+\frac {8}{3 x}\) | \(17\) |
norman | \(\frac {\frac {8}{3}+\frac {2 x \,{\mathrm e}^{6} {\mathrm e}^{2 x}}{3}}{x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 14, normalized size = 0.64 \begin {gather*} \frac {8}{3 \, x} + \frac {2}{3} \, e^{\left (2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 14, normalized size = 0.64 \begin {gather*} \frac {2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^6}{3}+\frac {8}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.68 \begin {gather*} \frac {2 e^{6} e^{2 x}}{3} + \frac {8}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________