Optimal. Leaf size=34 \[ \frac {x^2}{5 \left (e^x-4 e^{x^2}\right ) \left (-\frac {5}{x}+x+2 \log (\log (3))\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-15 x^2+5 x^3+x^4-x^5\right )+e^{x^2} \left (60 x^2-44 x^4+8 x^6\right )+\left (e^x \left (4 x^3-2 x^4\right )+e^{x^2} \left (-16 x^3+16 x^5\right )\right ) \log (\log (3))}{e^{x+x^2} \left (-1000+400 x^2-40 x^4\right )+e^{2 x} \left (125-50 x^2+5 x^4\right )+e^{2 x^2} \left (2000-800 x^2+80 x^4\right )+\left (e^{x+x^2} \left (800 x-160 x^3\right )+e^{2 x} \left (-100 x+20 x^3\right )+e^{2 x^2} \left (-1600 x+320 x^3\right )\right ) \log (\log (3))+\left (20 e^{2 x} x^2+320 e^{2 x^2} x^2-160 e^{x+x^2} x^2\right ) \log ^2(\log (3))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (4 e^{x^2} \left (15-11 x^2+2 x^4-4 x \log (\log (3))+4 x^3 \log (\log (3))\right )+e^x \left (-15-x^3+x^2 (1-2 \log (\log (3)))+x (5+4 \log (\log (3)))\right )\right )}{5 \left (e^x-4 e^{x^2}\right )^2 \left (5-x^2-2 x \log (\log (3))\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {x^2 \left (4 e^{x^2} \left (15-11 x^2+2 x^4-4 x \log (\log (3))+4 x^3 \log (\log (3))\right )+e^x \left (-15-x^3+x^2 (1-2 \log (\log (3)))+x (5+4 \log (\log (3)))\right )\right )}{\left (e^x-4 e^{x^2}\right )^2 \left (5-x^2-2 x \log (\log (3))\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^x x^3 (-1+2 x)}{\left (e^x-4 e^{x^2}\right )^2 \left (-5+x^2+2 x \log (\log (3))\right )}-\frac {x^2 \left (15-11 x^2+2 x^4-4 x \log (\log (3))+4 x^3 \log (\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^x x^3 (-1+2 x)}{\left (e^x-4 e^{x^2}\right )^2 \left (-5+x^2+2 x \log (\log (3))\right )} \, dx-\frac {1}{5} \int \frac {x^2 \left (15-11 x^2+2 x^4-4 x \log (\log (3))+4 x^3 \log (\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )^2} \, dx\\ &=-\left (\frac {1}{5} \int \left (\frac {2 x^2}{e^x-4 e^{x^2}}-\frac {4 x \log (\log (3))}{e^x-4 e^{x^2}}+\frac {9 \left (1+\frac {8}{9} \log ^2(\log (3))\right )}{e^x-4 e^{x^2}}+\frac {8 x \log (\log (3)) \left (5+2 \log ^2(\log (3))\right )-11 \left (5+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (5-x^2-2 x \log (\log (3))\right )}+\frac {2 \left (5 \left (5+2 \log ^2(\log (3))\right )-x \log (\log (3)) \left (15+4 \log ^2(\log (3))\right )\right )}{\left (e^x-4 e^{x^2}\right ) \left (5-x^2-2 x \log (\log (3))\right )^2}\right ) \, dx\right )+\frac {1}{5} \int \left (\frac {2 e^x x^2}{\left (e^x-4 e^{x^2}\right )^2}-\frac {e^x x (1+4 \log (\log (3)))}{\left (e^x-4 e^{x^2}\right )^2}+\frac {2 e^x \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right )^2}+\frac {e^x \left (-10 \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )+x \left (5+40 \log (\log (3))+4 \log ^2(\log (3))+16 \log ^3(\log (3))\right )\right )}{\left (e^x-4 e^{x^2}\right )^2 \left (5-x^2-2 x \log (\log (3))\right )}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {8 x \log (\log (3)) \left (5+2 \log ^2(\log (3))\right )-11 \left (5+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (5-x^2-2 x \log (\log (3))\right )} \, dx\right )+\frac {1}{5} \int \frac {e^x \left (-10 \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )+x \left (5+40 \log (\log (3))+4 \log ^2(\log (3))+16 \log ^3(\log (3))\right )\right )}{\left (e^x-4 e^{x^2}\right )^2 \left (5-x^2-2 x \log (\log (3))\right )} \, dx+\frac {2}{5} \int \frac {e^x x^2}{\left (e^x-4 e^{x^2}\right )^2} \, dx-\frac {2}{5} \int \frac {x^2}{e^x-4 e^{x^2}} \, dx-\frac {2}{5} \int \frac {5 \left (5+2 \log ^2(\log (3))\right )-x \log (\log (3)) \left (15+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (5-x^2-2 x \log (\log (3))\right )^2} \, dx+\frac {1}{5} (-1-4 \log (\log (3))) \int \frac {e^x x}{\left (e^x-4 e^{x^2}\right )^2} \, dx+\frac {1}{5} (4 \log (\log (3))) \int \frac {x}{e^x-4 e^{x^2}} \, dx+\frac {1}{5} \left (2 \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )\right ) \int \frac {e^x}{\left (e^x-4 e^{x^2}\right )^2} \, dx-\frac {1}{5} \left (9+8 \log ^2(\log (3))\right ) \int \frac {1}{e^x-4 e^{x^2}} \, dx\\ &=-\left (\frac {1}{5} \int \left (-\frac {8 x \log (\log (3)) \left (5+2 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )}+\frac {11 \left (5+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )}\right ) \, dx\right )+\frac {1}{5} \int \left (\frac {10 e^x \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right )^2 \left (-5+x^2+2 x \log (\log (3))\right )}-\frac {e^x x \left (5+40 \log (\log (3))+4 \log ^2(\log (3))+16 \log ^3(\log (3))\right )}{\left (e^x-4 e^{x^2}\right )^2 \left (-5+x^2+2 x \log (\log (3))\right )}\right ) \, dx+\frac {2}{5} \int \frac {e^x x^2}{\left (e^x-4 e^{x^2}\right )^2} \, dx-\frac {2}{5} \int \frac {x^2}{e^x-4 e^{x^2}} \, dx-\frac {2}{5} \int \left (\frac {5 \left (5+2 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )^2}-\frac {x \log (\log (3)) \left (15+4 \log ^2(\log (3))\right )}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )^2}\right ) \, dx+\frac {1}{5} (-1-4 \log (\log (3))) \int \frac {e^x x}{\left (e^x-4 e^{x^2}\right )^2} \, dx+\frac {1}{5} (4 \log (\log (3))) \int \frac {x}{e^x-4 e^{x^2}} \, dx+\frac {1}{5} \left (2 \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )\right ) \int \frac {e^x}{\left (e^x-4 e^{x^2}\right )^2} \, dx-\frac {1}{5} \left (9+8 \log ^2(\log (3))\right ) \int \frac {1}{e^x-4 e^{x^2}} \, dx\\ &=\frac {2}{5} \int \frac {e^x x^2}{\left (e^x-4 e^{x^2}\right )^2} \, dx-\frac {2}{5} \int \frac {x^2}{e^x-4 e^{x^2}} \, dx+\frac {1}{5} (-1-4 \log (\log (3))) \int \frac {e^x x}{\left (e^x-4 e^{x^2}\right )^2} \, dx+\frac {1}{5} (4 \log (\log (3))) \int \frac {x}{e^x-4 e^{x^2}} \, dx-\left (2 \left (5+2 \log ^2(\log (3))\right )\right ) \int \frac {1}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )^2} \, dx+\frac {1}{5} \left (8 \log (\log (3)) \left (5+2 \log ^2(\log (3))\right )\right ) \int \frac {x}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )} \, dx-\frac {1}{5} \left (11 \left (5+4 \log ^2(\log (3))\right )\right ) \int \frac {1}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )} \, dx+\frac {1}{5} \left (2 \log (\log (3)) \left (15+4 \log ^2(\log (3))\right )\right ) \int \frac {x}{\left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )^2} \, dx+\frac {1}{5} \left (2 \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )\right ) \int \frac {e^x}{\left (e^x-4 e^{x^2}\right )^2} \, dx+\left (2 \left (5+\log (\log (3))+4 \log ^2(\log (3))\right )\right ) \int \frac {e^x}{\left (e^x-4 e^{x^2}\right )^2 \left (-5+x^2+2 x \log (\log (3))\right )} \, dx-\frac {1}{5} \left (9+8 \log ^2(\log (3))\right ) \int \frac {1}{e^x-4 e^{x^2}} \, dx+\frac {1}{5} \left (-5-40 \log (\log (3))-4 \log ^2(\log (3))-16 \log ^3(\log (3))\right ) \int \frac {e^x x}{\left (e^x-4 e^{x^2}\right )^2 \left (-5+x^2+2 x \log (\log (3))\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 33, normalized size = 0.97 \begin {gather*} \frac {x^3}{5 \left (e^x-4 e^{x^2}\right ) \left (-5+x^2+2 x \log (\log (3))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 62, normalized size = 1.82 \begin {gather*} -\frac {x^{3} e^{\left (x^{2}\right )}}{5 \, {\left (4 \, {\left (x^{2} - 5\right )} e^{\left (2 \, x^{2}\right )} - {\left (x^{2} - 5\right )} e^{\left (x^{2} + x\right )} + 2 \, {\left (4 \, x e^{\left (2 \, x^{2}\right )} - x e^{\left (x^{2} + x\right )}\right )} \log \left (\log \relax (3)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 52, normalized size = 1.53 \begin {gather*} -\frac {x^{3}}{5 \, {\left (4 \, x^{2} e^{\left (x^{2}\right )} - x^{2} e^{x} + 8 \, x e^{\left (x^{2}\right )} \log \left (\log \relax (3)\right ) - 2 \, x e^{x} \log \left (\log \relax (3)\right ) - 20 \, e^{\left (x^{2}\right )} + 5 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 0.88
method | result | size |
risch | \(\frac {x^{3}}{5 \left (2 \ln \left (\ln \relax (3)\right ) x +x^{2}-5\right ) \left ({\mathrm e}^{x}-4 \,{\mathrm e}^{x^{2}}\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 40, normalized size = 1.18 \begin {gather*} -\frac {x^{3}}{5 \, {\left (4 \, {\left (x^{2} + 2 \, x \log \left (\log \relax (3)\right ) - 5\right )} e^{\left (x^{2}\right )} - {\left (x^{2} + 2 \, x \log \left (\log \relax (3)\right ) - 5\right )} e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.06, size = 100, normalized size = 2.94 \begin {gather*} -\frac {{\mathrm {e}}^x\,\left (\frac {2\,x^4\,\ln \left (\ln \relax (3)\right )}{5}-\frac {4\,x^5\,\ln \left (\ln \relax (3)\right )}{5}-x^3+2\,x^4+\frac {x^5}{5}-\frac {2\,x^6}{5}\right )}{\left (4\,{\mathrm {e}}^{x^2}-{\mathrm {e}}^x\right )\,\left ({\mathrm {e}}^x-2\,x\,{\mathrm {e}}^x\right )\,\left (4\,x^3\,\ln \left (\ln \relax (3)\right )+4\,x^2\,{\ln \left (\ln \relax (3)\right )}^2-20\,x\,\ln \left (\ln \relax (3)\right )-10\,x^2+x^4+25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 49, normalized size = 1.44 \begin {gather*} - \frac {x^{3}}{- 5 x^{2} e^{x} - 10 x e^{x} \log {\left (\log {\relax (3 )} \right )} + \left (20 x^{2} + 40 x \log {\left (\log {\relax (3 )} \right )} - 100\right ) e^{x^{2}} + 25 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________