Optimal. Leaf size=24 \[ \frac {3+e^{72 \log ^2(3 x)}+e^x x}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 32, normalized size of antiderivative = 1.33, number of steps used = 7, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 14, 2194, 2288} \begin {gather*} \frac {e^x}{2}+\frac {3}{2 x}+\frac {e^{72 \log ^2(3 x)}}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-3+e^x x^2+e^{72 \log ^2(3 x)} (-1+144 \log (3 x))}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {-3+e^x x^2}{x^2}+\frac {e^{72 \log ^2(3 x)} (-1+144 \log (3 x))}{x^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-3+e^x x^2}{x^2} \, dx+\frac {1}{2} \int \frac {e^{72 \log ^2(3 x)} (-1+144 \log (3 x))}{x^2} \, dx\\ &=\frac {e^{72 \log ^2(3 x)}}{2 x}+\frac {1}{2} \int \left (e^x-\frac {3}{x^2}\right ) \, dx\\ &=\frac {3}{2 x}+\frac {e^{72 \log ^2(3 x)}}{2 x}+\frac {\int e^x \, dx}{2}\\ &=\frac {e^x}{2}+\frac {3}{2 x}+\frac {e^{72 \log ^2(3 x)}}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 27, normalized size = 1.12 \begin {gather*} \frac {1}{2} \left (e^x+\frac {3}{x}+\frac {e^{72 \log ^2(3 x)}}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 0.83 \begin {gather*} \frac {x e^{x} + e^{\left (72 \, \log \left (3 \, x\right )^{2}\right )} + 3}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 20, normalized size = 0.83 \begin {gather*} \frac {x e^{x} + e^{\left (72 \, \log \left (3 \, x\right )^{2}\right )} + 3}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.04
method | result | size |
default | \(\frac {{\mathrm e}^{72 \ln \left (3 x \right )^{2}}}{2 x}+\frac {3}{2 x}+\frac {{\mathrm e}^{x}}{2}\) | \(25\) |
risch | \(\frac {{\mathrm e}^{x} x +3}{2 x}+\frac {{\mathrm e}^{72 \ln \left (3 x \right )^{2}}}{2 x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.51, size = 116, normalized size = 4.83 \begin {gather*} \frac {1}{16} i \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (6 i \, \sqrt {2} \log \left (3 \, x\right ) - \frac {1}{24} i \, \sqrt {2}\right ) e^{\left (-\frac {1}{288}\right )} + \frac {1}{16} \, \sqrt {2} {\left (\frac {\sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{12} \, \sqrt {\frac {1}{2}} \sqrt {-{\left (144 \, \log \left (3 \, x\right ) - 1\right )}^{2}}\right ) - 1\right )} {\left (144 \, \log \left (3 \, x\right ) - 1\right )}}{\sqrt {-{\left (144 \, \log \left (3 \, x\right ) - 1\right )}^{2}}} + 12 \, \sqrt {2} e^{\left (\frac {1}{288} \, {\left (144 \, \log \left (3 \, x\right ) - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{288}\right )} + \frac {3}{2 \, x} + \frac {1}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.39, size = 35, normalized size = 1.46 \begin {gather*} \frac {{\mathrm {e}}^x}{2}+\frac {3}{2\,x}+\frac {x^{144\,\ln \relax (3)}\,{\mathrm {e}}^{72\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{72\,{\ln \relax (3)}^2}}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 22, normalized size = 0.92 \begin {gather*} \frac {e^{x}}{2} + \frac {e^{72 \log {\left (3 x \right )}^{2}}}{2 x} + \frac {3}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________