Optimal. Leaf size=28 \[ 2+\frac {e^{\frac {x}{x-4 x \left (5+\log \left (x^2\right )\right )}}}{x}-16 x^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-11552 x^3-4864 x^3 \log \left (x^2\right )-512 x^3 \log ^2\left (x^2\right )+e^{-\frac {1}{19+4 \log \left (x^2\right )}} \left (-353-152 \log \left (x^2\right )-16 \log ^2\left (x^2\right )\right )}{361 x^2+152 x^2 \log \left (x^2\right )+16 x^2 \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-11552 x^3-4864 x^3 \log \left (x^2\right )-512 x^3 \log ^2\left (x^2\right )+e^{-\frac {1}{19+4 \log \left (x^2\right )}} \left (-353-152 \log \left (x^2\right )-16 \log ^2\left (x^2\right )\right )}{x^2 \left (19+4 \log \left (x^2\right )\right )^2} \, dx\\ &=\int \left (-32 x-\frac {e^{\frac {1}{-19-4 \log \left (x^2\right )}} \left (353+152 \log \left (x^2\right )+16 \log ^2\left (x^2\right )\right )}{x^2 \left (19+4 \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=-16 x^2-\int \frac {e^{\frac {1}{-19-4 \log \left (x^2\right )}} \left (353+152 \log \left (x^2\right )+16 \log ^2\left (x^2\right )\right )}{x^2 \left (19+4 \log \left (x^2\right )\right )^2} \, dx\\ &=-16 x^2-\int \left (\frac {e^{\frac {1}{-19-4 \log \left (x^2\right )}}}{x^2}-\frac {8 e^{\frac {1}{-19-4 \log \left (x^2\right )}}}{x^2 \left (19+4 \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=-16 x^2+8 \int \frac {e^{\frac {1}{-19-4 \log \left (x^2\right )}}}{x^2 \left (19+4 \log \left (x^2\right )\right )^2} \, dx-\int \frac {e^{\frac {1}{-19-4 \log \left (x^2\right )}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 24, normalized size = 0.86 \begin {gather*} \frac {e^{-\frac {1}{19+4 \log \left (x^2\right )}}}{x}-16 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 0.93 \begin {gather*} -\frac {16 \, x^{3} - e^{\left (-\frac {1}{4 \, \log \left (x^{2}\right ) + 19}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {512 \, x^{3} \log \left (x^{2}\right )^{2} + 4864 \, x^{3} \log \left (x^{2}\right ) + 11552 \, x^{3} + {\left (16 \, \log \left (x^{2}\right )^{2} + 152 \, \log \left (x^{2}\right ) + 353\right )} e^{\left (-\frac {1}{4 \, \log \left (x^{2}\right ) + 19}\right )}}{16 \, x^{2} \log \left (x^{2}\right )^{2} + 152 \, x^{2} \log \left (x^{2}\right ) + 361 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 0.86
method | result | size |
risch | \(-16 x^{2}+\frac {{\mathrm e}^{-\frac {1}{4 \ln \left (x^{2}\right )+19}}}{x}\) | \(24\) |
default | \(-16 x^{2}+\frac {\left (4 \ln \left (x^{2}\right )-8 \ln \relax (x )+19\right ) {\mathrm e}^{-\frac {1}{4 \ln \left (x^{2}\right )+19}}+8 \ln \relax (x ) {\mathrm e}^{-\frac {1}{4 \ln \left (x^{2}\right )+19}}}{x \left (4 \ln \left (x^{2}\right )+19\right )}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -16 \, x^{2} - \int \frac {{\left (64 \, \log \relax (x)^{2} + 304 \, \log \relax (x) + 353\right )} e^{\left (-\frac {1}{8 \, \log \relax (x) + 19}\right )}}{64 \, x^{2} \log \relax (x)^{2} + 304 \, x^{2} \log \relax (x) + 361 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.06, size = 21, normalized size = 0.75 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {1}{\ln \left (x^8\right )+19}}}{x}-16\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 19, normalized size = 0.68 \begin {gather*} - 16 x^{2} + \frac {e^{- \frac {1}{4 \log {\left (x^{2} \right )} + 19}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________