Optimal. Leaf size=28 \[ \frac {1}{625 \left (2-e^3\right )^2 x \left (1+\frac {e^x x}{4}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 4, integrand size = 94, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6, 6688, 12, 6687} \begin {gather*} \frac {4}{625 \left (2-e^3\right )^2 x \left (e^x x+4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16+e^x \left (-8 x-4 x^2\right )}{10000 e^6 x^2+\left (40000-40000 e^3\right ) x^2+e^x \left (20000 x^3-20000 e^3 x^3+5000 e^6 x^3\right )+e^{2 x} \left (2500 x^4-2500 e^3 x^4+625 e^6 x^4\right )} \, dx\\ &=\int \frac {-16+e^x \left (-8 x-4 x^2\right )}{\left (40000-40000 e^3+10000 e^6\right ) x^2+e^x \left (20000 x^3-20000 e^3 x^3+5000 e^6 x^3\right )+e^{2 x} \left (2500 x^4-2500 e^3 x^4+625 e^6 x^4\right )} \, dx\\ &=\int \frac {4 \left (-4-e^x x (2+x)\right )}{625 \left (2-e^3\right )^2 x^2 \left (4+e^x x\right )^2} \, dx\\ &=\frac {4 \int \frac {-4-e^x x (2+x)}{x^2 \left (4+e^x x\right )^2} \, dx}{625 \left (2-e^3\right )^2}\\ &=\frac {4}{625 \left (2-e^3\right )^2 x \left (4+e^x x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 23, normalized size = 0.82 \begin {gather*} \frac {4}{625 \left (-2+e^3\right )^2 x \left (4+e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 40, normalized size = 1.43 \begin {gather*} \frac {4}{625 \, {\left (4 \, x e^{6} - 16 \, x e^{3} + {\left (x^{2} e^{6} - 4 \, x^{2} e^{3} + 4 \, x^{2}\right )} e^{x} + 16 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 42, normalized size = 1.50 \begin {gather*} \frac {4}{625 \, {\left (x^{2} e^{\left (x + 6\right )} - 4 \, x^{2} e^{\left (x + 3\right )} + 4 \, x^{2} e^{x} + 4 \, x e^{6} - 16 \, x e^{3} + 16 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 20, normalized size = 0.71
method | result | size |
norman | \(\frac {4}{625 \left ({\mathrm e}^{3}-2\right )^{2} x \left ({\mathrm e}^{x} x +4\right )}\) | \(20\) |
risch | \(\frac {4}{625 x \left ({\mathrm e}^{6}-4 \,{\mathrm e}^{3}+4\right ) \left ({\mathrm e}^{x} x +4\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 30, normalized size = 1.07 \begin {gather*} \frac {4}{625 \, {\left (x^{2} {\left (e^{6} - 4 \, e^{3} + 4\right )} e^{x} + 4 \, x {\left (e^{6} - 4 \, e^{3} + 4\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.16, size = 19, normalized size = 0.68 \begin {gather*} \frac {4}{625\,x\,\left (x\,{\mathrm {e}}^x+4\right )\,{\left ({\mathrm {e}}^3-2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 42, normalized size = 1.50 \begin {gather*} \frac {4}{- 10000 x e^{3} + 10000 x + 2500 x e^{6} + \left (- 2500 x^{2} e^{3} + 2500 x^{2} + 625 x^{2} e^{6}\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________