Optimal. Leaf size=22 \[ e^{\frac {5}{\log \left (-4+e^{e^{2 x}+x}+\log (5+x)\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 1.27, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6706} \begin {gather*} e^{\frac {5}{\log \left (e^{x+e^{2 x}}+\log (x+5)-4\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {5}{\log \left (-4+e^{e^{2 x}+x}+\log (5+x)\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 22, normalized size = 1.00 \begin {gather*} e^{\frac {5}{\log \left (-4+e^{e^{2 x}+x}+\log (5+x)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 19, normalized size = 0.86 \begin {gather*} e^{\left (\frac {5}{\log \left (e^{\left (x + e^{\left (2 \, x\right )}\right )} + \log \left (x + 5\right ) - 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 0.91
method | result | size |
risch | \({\mathrm e}^{\frac {5}{\ln \left ({\mathrm e}^{{\mathrm e}^{2 x}+x}+\ln \left (5+x \right )-4\right )}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 264, normalized size = 12.00 \begin {gather*} \frac {2 \, x e^{\left (3 \, x + \frac {5}{\log \left (e^{\left (x + e^{\left (2 \, x\right )}\right )} + \log \left (x + 5\right ) - 4\right )} + e^{\left (2 \, x\right )}\right )}}{{\left (2 \, {\left (x + 5\right )} e^{\left (3 \, x\right )} + {\left (x + 5\right )} e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )} + 1} + \frac {x e^{\left (x + \frac {5}{\log \left (e^{\left (x + e^{\left (2 \, x\right )}\right )} + \log \left (x + 5\right ) - 4\right )} + e^{\left (2 \, x\right )}\right )}}{{\left (2 \, {\left (x + 5\right )} e^{\left (3 \, x\right )} + {\left (x + 5\right )} e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )} + 1} + \frac {10 \, e^{\left (3 \, x + \frac {5}{\log \left (e^{\left (x + e^{\left (2 \, x\right )}\right )} + \log \left (x + 5\right ) - 4\right )} + e^{\left (2 \, x\right )}\right )}}{{\left (2 \, {\left (x + 5\right )} e^{\left (3 \, x\right )} + {\left (x + 5\right )} e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )} + 1} + \frac {5 \, e^{\left (x + \frac {5}{\log \left (e^{\left (x + e^{\left (2 \, x\right )}\right )} + \log \left (x + 5\right ) - 4\right )} + e^{\left (2 \, x\right )}\right )}}{{\left (2 \, {\left (x + 5\right )} e^{\left (3 \, x\right )} + {\left (x + 5\right )} e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )} + 1} + \frac {e^{\left (\frac {5}{\log \left (e^{\left (x + e^{\left (2 \, x\right )}\right )} + \log \left (x + 5\right ) - 4\right )}\right )}}{{\left (2 \, {\left (x + 5\right )} e^{\left (3 \, x\right )} + {\left (x + 5\right )} e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.37, size = 20, normalized size = 0.91 \begin {gather*} {\mathrm {e}}^{\frac {5}{\ln \left (\ln \left (x+5\right )+{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^x-4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________