Optimal. Leaf size=25 \[ \frac {2 \left (2-x+4 \left (-2+x^3+\log (2)\right )\right )}{-e^6+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 37, normalized size of antiderivative = 1.48, number of steps used = 3, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {27, 1850} \begin {gather*} 8 x^2+8 e^6 x+\frac {2 \left (6+e^6-4 e^{18}-\log (16)\right )}{e^6-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12+16 x^3+e^6 \left (2-24 x^2\right )-8 \log (2)}{\left (-e^6+x\right )^2} \, dx\\ &=\int \left (8 e^6+16 x+\frac {2 \left (6+e^6-4 e^{18}-\log (16)\right )}{\left (e^6-x\right )^2}\right ) \, dx\\ &=8 e^6 x+8 x^2+\frac {2 \left (6+e^6-4 e^{18}-\log (16)\right )}{e^6-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 36, normalized size = 1.44 \begin {gather*} \frac {2 \left (6+e^6-12 e^{18}+12 e^{12} x-4 x^3-4 \log (2)\right )}{e^6-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 34, normalized size = 1.36 \begin {gather*} \frac {2 \, {\left (4 \, x^{3} - 4 \, x e^{12} + 4 \, e^{18} - e^{6} + 4 \, \log \relax (2) - 6\right )}}{x - e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 28, normalized size = 1.12
method | result | size |
gosper | \(\frac {-8 x^{3}+2 \,{\mathrm e}^{6}-8 \ln \relax (2)+12}{{\mathrm e}^{6}-x}\) | \(28\) |
norman | \(\frac {-8 x^{3}+2 \,{\mathrm e}^{6}-8 \ln \relax (2)+12}{{\mathrm e}^{6}-x}\) | \(29\) |
risch | \(8 x \,{\mathrm e}^{6}+8 x^{2}-\frac {8 \,{\mathrm e}^{18}}{{\mathrm e}^{6}-x}+\frac {2 \,{\mathrm e}^{6}}{{\mathrm e}^{6}-x}-\frac {8 \ln \relax (2)}{{\mathrm e}^{6}-x}+\frac {12}{{\mathrm e}^{6}-x}\) | \(58\) |
meijerg | \(\frac {12 \,{\mathrm e}^{-12} x}{1-x \,{\mathrm e}^{-6}}-\frac {8 \ln \relax (2) {\mathrm e}^{-12} x}{1-x \,{\mathrm e}^{-6}}+24 \,{\mathrm e}^{12} \left (-\frac {x \,{\mathrm e}^{-6} \left (-3 x \,{\mathrm e}^{-6}+6\right )}{3 \left (1-x \,{\mathrm e}^{-6}\right )}-2 \ln \left (1-x \,{\mathrm e}^{-6}\right )\right )+\frac {2 \,{\mathrm e}^{-6} x}{1-x \,{\mathrm e}^{-6}}+16 \,{\mathrm e}^{12} \left (\frac {x \,{\mathrm e}^{-6} \left (-2 x^{2} {\mathrm e}^{-12}-6 x \,{\mathrm e}^{-6}+12\right )}{4-4 x \,{\mathrm e}^{-6}}+3 \ln \left (1-x \,{\mathrm e}^{-6}\right )\right )\) | \(125\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 35, normalized size = 1.40 \begin {gather*} 8 \, x^{2} + 8 \, x e^{6} + \frac {2 \, {\left (4 \, e^{18} - e^{6} + 4 \, \log \relax (2) - 6\right )}}{x - e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 34, normalized size = 1.36 \begin {gather*} -\frac {-8\,x^3+8\,{\mathrm {e}}^{12}\,x+2\,{\mathrm {e}}^6-8\,{\mathrm {e}}^{18}-\ln \left (256\right )+12}{x-{\mathrm {e}}^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 32, normalized size = 1.28 \begin {gather*} 8 x^{2} + 8 x e^{6} + \frac {- 2 e^{6} - 12 + 8 \log {\relax (2 )} + 8 e^{18}}{x - e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________