Optimal. Leaf size=28 \[ 1+2 x+\log \left (e^{2 x} \left (2 e^{-2-x}-x\right ) (5+x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5-22 x-4 x^2+2 e^{-2-x} (16+3 x)}{-5 x-x^2+2 e^{-2-x} (5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+x} \left (-5-22 x-4 x^2+2 e^{-2-x} (16+3 x)\right )}{(5+x) \left (2-e^{2+x} x\right )} \, dx\\ &=\int \frac {32+6 x-e^{2+x} \left (5+22 x+4 x^2\right )}{(5+x) \left (2-e^{2+x} x\right )} \, dx\\ &=\int \left (\frac {2 (1+x)}{x \left (-2+e^{2+x} x\right )}+\frac {5+22 x+4 x^2}{x (5+x)}\right ) \, dx\\ &=2 \int \frac {1+x}{x \left (-2+e^{2+x} x\right )} \, dx+\int \frac {5+22 x+4 x^2}{x (5+x)} \, dx\\ &=2 \int \left (\frac {1}{-2+e^{2+x} x}+\frac {1}{x \left (-2+e^{2+x} x\right )}\right ) \, dx+\int \left (4+\frac {1}{x}+\frac {1}{5+x}\right ) \, dx\\ &=4 x+\log (x)+\log (5+x)+2 \int \frac {1}{-2+e^{2+x} x} \, dx+2 \int \frac {1}{x \left (-2+e^{2+x} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 19, normalized size = 0.68 \begin {gather*} 3 x+\log (5+x)+\log \left (2-e^{2+x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 21, normalized size = 0.75 \begin {gather*} 4 \, x + \log \left (x + 5\right ) + \log \left (-x + e^{\left (-x + \log \relax (2) - 2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 21, normalized size = 0.75 \begin {gather*} 4 \, x + \log \left (-x e^{2} + 2 \, e^{\left (-x\right )}\right ) + \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 22, normalized size = 0.79
method | result | size |
norman | \(4 x +\ln \left (5+x \right )+\ln \left (x -{\mathrm e}^{\ln \relax (2)-x -2}\right )\) | \(22\) |
risch | \(4 x +\ln \left (5+x \right )-\ln \relax (2)+2+\ln \left (2 \,{\mathrm e}^{-x -2}-x \right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 25, normalized size = 0.89 \begin {gather*} 3 \, x + \log \left (x + 5\right ) + \log \relax (x) + \log \left (\frac {{\left (x e^{\left (x + 2\right )} - 2\right )} e^{\left (-2\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 19, normalized size = 0.68 \begin {gather*} 4\,x+\ln \left (x-2\,{\mathrm {e}}^{-x-2}\right )+\ln \left (x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.68 \begin {gather*} 4 x + \log {\left (- \frac {x}{2} + e^{- x - 2} \right )} + \log {\left (x + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________