Optimal. Leaf size=26 \[ \frac {4-2 x+\log \left (-5+\frac {5 e^4 \log (4)}{4+2 x}\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.35, antiderivative size = 305, normalized size of antiderivative = 11.73, number of steps used = 14, number of rules used = 10, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {6741, 6728, 1628, 632, 31, 1586, 21, 2490, 36, 29} \begin {gather*} \frac {e^4 \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right ) \log (x)}{\left (8-e^4 \log (16)\right )^2}+\frac {\left (e^8 \log ^2(4) \log (16)+4 e^4 \left (22 \log ^2(4)-22 \log (4) \log (16)+\log (16) \log (262144)\right )+64 \log (4)-4 \log (65536)\right ) \log (x+2)}{\log (4) \left (8-e^4 \log (16)\right )^2}-\frac {\left (e^8 \log (4) \left (8 \log ^2(4)+\log (4) \log (16)-\log (16) \log (1024)\right )+e^4 \left (88 \log ^2(4)-\log (4) (88 \log (16)-\log (65536))+4 \log (16) \log (262144)\right )+64 \log (4)-4 \log (65536)\right ) \log \left (2 x+4-e^4 \log (4)\right )}{\log (4) \left (8-e^4 \log (16)\right )^2}-\frac {e^4 \log (4) \log (x)}{2 \left (4-e^4 \log (4)\right )}+\frac {e^4 \log (4) \log \left (2 x+4-e^4 \log (4)\right )}{2 \left (4-e^4 \log (4)\right )}+\frac {(x+2) \log \left (-\frac {5 \left (2 x+4-e^4 \log (4)\right )}{2 (x+2)}\right )}{2 x}+\frac {8 \left (4-e^4 \log (4)\right )}{x \left (8-e^4 \log (16)\right )} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
Rule 21
Rule 29
Rule 31
Rule 36
Rule 632
Rule 1586
Rule 1628
Rule 2490
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32-32 x-8 x^2-e^4 (-8-5 x) \log (4)-\left (8+8 x+2 x^2+e^4 (-2-x) \log (4)\right ) \log \left (\frac {-20-10 x+5 e^4 \log (4)}{4+2 x}\right )}{x^2 \left (8+2 x^2-x \left (-8+e^4 \log (4)\right )-e^4 \log (16)\right )} \, dx\\ &=\int \left (\frac {-8 x^2-x \left (32-5 e^4 \log (4)\right )-8 \left (4-e^4 \log (4)\right )}{x^2 \left (8+2 x^2+x \left (8-e^4 \log (4)\right )-e^4 \log (16)\right )}+\frac {(2+x) \left (-4-2 x+e^4 \log (4)\right ) \log \left (\frac {5 \left (-4-2 x+e^4 \log (4)\right )}{2 (2+x)}\right )}{x^2 \left (8+2 x^2+x \left (8-e^4 \log (4)\right )-e^4 \log (16)\right )}\right ) \, dx\\ &=\int \frac {-8 x^2-x \left (32-5 e^4 \log (4)\right )-8 \left (4-e^4 \log (4)\right )}{x^2 \left (8+2 x^2+x \left (8-e^4 \log (4)\right )-e^4 \log (16)\right )} \, dx+\int \frac {(2+x) \left (-4-2 x+e^4 \log (4)\right ) \log \left (\frac {5 \left (-4-2 x+e^4 \log (4)\right )}{2 (2+x)}\right )}{x^2 \left (8+2 x^2+x \left (8-e^4 \log (4)\right )-e^4 \log (16)\right )} \, dx\\ &=\int \left (-\frac {8 \left (-4+e^4 \log (4)\right )}{x^2 \left (-8+e^4 \log (16)\right )}+\frac {e^4 \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right )}{x \left (8-e^4 \log (16)\right )^2}+\frac {e^4 \left (-64 \log (4)-e^8 \log ^2(4) \log (16)-8 e^4 \left (15 \log ^2(4)-11 \log (4) \log (16)+\log ^2(16)\right )-2 x \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right )\right )}{\left (8-e^4 \log (16)\right )^2 \left (8+2 x^2+x \left (8-e^4 \log (4)\right )-e^4 \log (16)\right )}\right ) \, dx+\int \frac {\left (-4-2 x+e^4 \log (4)\right ) \log \left (\frac {5 \left (-4-2 x+e^4 \log (4)\right )}{2 (2+x)}\right )}{x^2 \left (4+2 x-e^4 \log (4)\right )} \, dx\\ &=\frac {8 \left (4-e^4 \log (4)\right )}{x \left (8-e^4 \log (16)\right )}+\frac {e^4 \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right ) \log (x)}{\left (8-e^4 \log (16)\right )^2}+\frac {e^4 \int \frac {-64 \log (4)-e^8 \log ^2(4) \log (16)-8 e^4 \left (15 \log ^2(4)-11 \log (4) \log (16)+\log ^2(16)\right )-2 x \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right )}{8+2 x^2+x \left (8-e^4 \log (4)\right )-e^4 \log (16)} \, dx}{\left (8-e^4 \log (16)\right )^2}-\int \frac {\log \left (\frac {5 \left (-4-2 x+e^4 \log (4)\right )}{2 (2+x)}\right )}{x^2} \, dx\\ &=\frac {8 \left (4-e^4 \log (4)\right )}{x \left (8-e^4 \log (16)\right )}+\frac {e^4 \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right ) \log (x)}{\left (8-e^4 \log (16)\right )^2}+\frac {(2+x) \log \left (-\frac {5 \left (4+2 x-e^4 \log (4)\right )}{2 (2+x)}\right )}{2 x}+\frac {1}{2} \left (e^4 \log (4)\right ) \int \frac {1}{x \left (-4-2 x+e^4 \log (4)\right )} \, dx+\frac {\left (2 \left (64 \log (4)+e^8 \log ^2(4) \log (16)-4 \log (65536)+4 e^4 \left (22 \log ^2(4)-22 \log (4) \log (16)+\log (16) \log (262144)\right )\right )\right ) \int \frac {1}{2 x+\frac {1}{2} e^4 \log (4)+\frac {1}{2} \left (8-e^4 \log (4)\right )} \, dx}{\log (4) \left (8-e^4 \log (16)\right )^2}-\frac {\left (2 \left (64 \log (4)+e^8 \log (4) \left (8 \log ^2(4)+\log (4) \log (16)-\log (16) \log (1024)\right )-4 \log (65536)+e^4 \left (88 \log ^2(4)-\log (4) (88 \log (16)-\log (65536))+4 \log (16) \log (262144)\right )\right )\right ) \int \frac {1}{2 x-\frac {1}{2} e^4 \log (4)+\frac {1}{2} \left (8-e^4 \log (4)\right )} \, dx}{\log (4) \left (8-e^4 \log (16)\right )^2}\\ &=\frac {8 \left (4-e^4 \log (4)\right )}{x \left (8-e^4 \log (16)\right )}+\frac {e^4 \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right ) \log (x)}{\left (8-e^4 \log (16)\right )^2}+\frac {\left (64 \log (4)+e^8 \log ^2(4) \log (16)-4 \log (65536)+4 e^4 \left (22 \log ^2(4)-22 \log (4) \log (16)+\log (16) \log (262144)\right )\right ) \log (2+x)}{\log (4) \left (8-e^4 \log (16)\right )^2}-\frac {\left (64 \log (4)+e^8 \log (4) \left (8 \log ^2(4)+\log (4) \log (16)-\log (16) \log (1024)\right )-4 \log (65536)+e^4 \left (88 \log ^2(4)-\log (4) (88 \log (16)-\log (65536))+4 \log (16) \log (262144)\right )\right ) \log \left (4+2 x-e^4 \log (4)\right )}{\log (4) \left (8-e^4 \log (16)\right )^2}+\frac {(2+x) \log \left (-\frac {5 \left (4+2 x-e^4 \log (4)\right )}{2 (2+x)}\right )}{2 x}-\frac {\left (e^4 \log (4)\right ) \int \frac {1}{-4-2 x+e^4 \log (4)} \, dx}{4-e^4 \log (4)}+\frac {\left (e^4 \log (4)\right ) \int \frac {1}{x} \, dx}{2 \left (-4+e^4 \log (4)\right )}\\ &=\frac {8 \left (4-e^4 \log (4)\right )}{x \left (8-e^4 \log (16)\right )}-\frac {e^4 \log (4) \log (x)}{2 \left (4-e^4 \log (4)\right )}+\frac {e^4 \left (e^4 \left (8 \log ^2(4)-\log (16) \log (1024)\right )+\log (65536)\right ) \log (x)}{\left (8-e^4 \log (16)\right )^2}+\frac {\left (64 \log (4)+e^8 \log ^2(4) \log (16)-4 \log (65536)+4 e^4 \left (22 \log ^2(4)-22 \log (4) \log (16)+\log (16) \log (262144)\right )\right ) \log (2+x)}{\log (4) \left (8-e^4 \log (16)\right )^2}+\frac {e^4 \log (4) \log \left (4+2 x-e^4 \log (4)\right )}{2 \left (4-e^4 \log (4)\right )}-\frac {\left (64 \log (4)+e^8 \log (4) \left (8 \log ^2(4)+\log (4) \log (16)-\log (16) \log (1024)\right )-4 \log (65536)+e^4 \left (88 \log ^2(4)-\log (4) (88 \log (16)-\log (65536))+4 \log (16) \log (262144)\right )\right ) \log \left (4+2 x-e^4 \log (4)\right )}{\log (4) \left (8-e^4 \log (16)\right )^2}+\frac {(2+x) \log \left (-\frac {5 \left (4+2 x-e^4 \log (4)\right )}{2 (2+x)}\right )}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 31, normalized size = 1.19 \begin {gather*} \frac {4}{x}+\frac {\log \left (\frac {5 \left (-4-2 x+e^4 \log (4)\right )}{2 (2+x)}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 24, normalized size = 0.92 \begin {gather*} \frac {\log \left (\frac {5 \, {\left (e^{4} \log \relax (2) - x - 2\right )}}{x + 2}\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.46, size = 120, normalized size = 4.62 \begin {gather*} \frac {{\left (2 \, e^{8} \log \relax (2)^{2} + \frac {{\left (e^{4} \log \relax (2) - x - 2\right )} e^{4} \log \relax (2) \log \left (\frac {5 \, {\left (e^{4} \log \relax (2) - x - 2\right )}}{x + 2}\right )}{x + 2} + e^{4} \log \relax (2) \log \left (\frac {5 \, {\left (e^{4} \log \relax (2) - x - 2\right )}}{x + 2}\right )\right )} {\left (\frac {{\left (e^{4} \log \relax (2) - 2\right )} e^{\left (-8\right )}}{\log \relax (2)^{2}} + \frac {2 \, e^{\left (-8\right )}}{\log \relax (2)^{2}}\right )}}{e^{4} \log \relax (2) - \frac {2 \, {\left (e^{4} \log \relax (2) - x - 2\right )}}{x + 2} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 27, normalized size = 1.04
method | result | size |
norman | \(\frac {4+\ln \left (\frac {10 \,{\mathrm e}^{4} \ln \relax (2)-10 x -20}{2 x +4}\right )}{x}\) | \(27\) |
risch | \(\frac {\ln \left (\frac {10 \,{\mathrm e}^{4} \ln \relax (2)-10 x -20}{2 x +4}\right )}{x}+\frac {4}{x}\) | \(31\) |
derivativedivides | \(-\frac {5 \,{\mathrm e}^{4} \ln \relax (2) \left (-\frac {\ln \left (5 \,{\mathrm e}^{4} \ln \relax (2)-\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \left ({\mathrm e}^{4} \ln \relax (2)-2\right )}-\frac {2 \ln \left (-5+\frac {5 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right ) \left (-5+\frac {5 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \left ({\mathrm e}^{4} \ln \relax (2)-2\right ) \left (5 \,{\mathrm e}^{4} \ln \relax (2)-\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}+\frac {4}{-5 \,{\mathrm e}^{4} \ln \relax (2)+\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}}+\frac {\ln \left (-5 \,{\mathrm e}^{4} \ln \relax (2)+\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \,{\mathrm e}^{4} \ln \relax (2)-10}-\frac {2 \,{\mathrm e}^{-4} \ln \left (-5+\frac {5 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \ln \relax (2) \left ({\mathrm e}^{4} \ln \relax (2)-2\right )}\right )}{2}\) | \(181\) |
default | \(-\frac {5 \,{\mathrm e}^{4} \ln \relax (2) \left (-\frac {\ln \left (5 \,{\mathrm e}^{4} \ln \relax (2)-\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \left ({\mathrm e}^{4} \ln \relax (2)-2\right )}-\frac {2 \ln \left (-5+\frac {5 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right ) \left (-5+\frac {5 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \left ({\mathrm e}^{4} \ln \relax (2)-2\right ) \left (5 \,{\mathrm e}^{4} \ln \relax (2)-\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}+\frac {4}{-5 \,{\mathrm e}^{4} \ln \relax (2)+\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}}+\frac {\ln \left (-5 \,{\mathrm e}^{4} \ln \relax (2)+\frac {10 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \,{\mathrm e}^{4} \ln \relax (2)-10}-\frac {2 \,{\mathrm e}^{-4} \ln \left (-5+\frac {5 \,{\mathrm e}^{4} \ln \relax (2)}{2+x}\right )}{5 \ln \relax (2) \left ({\mathrm e}^{4} \ln \relax (2)-2\right )}\right )}{2}\) | \(181\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 391, normalized size = 15.04 \begin {gather*} -2 \, {\left (\frac {e^{\left (-4\right )} \log \left (x + 2\right )}{\log \relax (2)} - \frac {{\left (e^{4} \log \relax (2) - 4\right )} \log \relax (x)}{e^{8} \log \relax (2)^{2} - 4 \, e^{4} \log \relax (2) + 4} - \frac {4 \, \log \left (-e^{4} \log \relax (2) + x + 2\right )}{e^{12} \log \relax (2)^{3} - 4 \, e^{8} \log \relax (2)^{2} + 4 \, e^{4} \log \relax (2)} - \frac {2}{{\left (e^{4} \log \relax (2) - 2\right )} x}\right )} e^{4} \log \relax (2) + \frac {5}{2} \, {\left (\frac {e^{\left (-4\right )} \log \left (x + 2\right )}{\log \relax (2)} + \frac {2 \, \log \left (-e^{4} \log \relax (2) + x + 2\right )}{e^{8} \log \relax (2)^{2} - 2 \, e^{4} \log \relax (2)} - \frac {\log \relax (x)}{e^{4} \log \relax (2) - 2}\right )} e^{4} \log \relax (2) + \frac {e^{4} \log \relax (2) \log \relax (x)}{2 \, {\left (e^{4} \log \relax (2) - 2\right )}} - \frac {4 \, e^{\left (-4\right )} \log \left (-e^{4} \log \relax (2) + x + 2\right )}{\log \relax (2)} - \frac {4 \, {\left (e^{4} \log \relax (2) - 4\right )} \log \relax (x)}{e^{8} \log \relax (2)^{2} - 4 \, e^{4} \log \relax (2) + 4} - \frac {16 \, \log \left (-e^{4} \log \relax (2) + x + 2\right )}{e^{12} \log \relax (2)^{3} - 4 \, e^{8} \log \relax (2)^{2} + 4 \, e^{4} \log \relax (2)} - \frac {16 \, \log \left (-e^{4} \log \relax (2) + x + 2\right )}{e^{8} \log \relax (2)^{2} - 2 \, e^{4} \log \relax (2)} + \frac {8 \, \log \relax (x)}{e^{4} \log \relax (2) - 2} - \frac {4 i \, \pi - 2 \, {\left (i \, \pi \log \relax (2) + \log \relax (5) \log \relax (2)\right )} e^{4} - 2 \, {\left (e^{4} \log \relax (2) - x - 2\right )} \log \left (-e^{4} \log \relax (2) + x + 2\right ) + {\left ({\left (e^{4} \log \relax (2) - 2\right )} x + 2 \, e^{4} \log \relax (2) - 4\right )} \log \left (x + 2\right ) + 4 \, \log \relax (5)}{2 \, {\left (e^{4} \log \relax (2) - 2\right )} x} - \frac {8}{{\left (e^{4} \log \relax (2) - 2\right )} x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.92, size = 23, normalized size = 0.88 \begin {gather*} \frac {\ln \left (-\frac {5\,\left (x-{\mathrm {e}}^4\,\ln \relax (2)+2\right )}{x+2}\right )+4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 0.92 \begin {gather*} \frac {\log {\left (\frac {- 10 x - 20 + 10 e^{4} \log {\relax (2 )}}{2 x + 4} \right )}}{x} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________