Optimal. Leaf size=25 \[ x \left (x+\frac {18}{(-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-90 x^2+36 x^3-50 x^5+20 x^6-2 x^7+e^{-5+x} \left (90 x+72 x^2-36 x^3+50 x^5-20 x^6+2 x^7\right )+\left (90-100 x^3+40 x^4-4 x^5+e^{-5+x} \left (-90+100 x^3-40 x^4+4 x^5\right )\right ) \log \left (-1+e^{-5+x}\right )+\left (-50 x+20 x^2-2 x^3+e^{-5+x} \left (50 x-20 x^2+2 x^3\right )\right ) \log ^2\left (-1+e^{-5+x}\right )}{-25 x^4+10 x^5-x^6+e^{-5+x} \left (25 x^4-10 x^5+x^6\right )+\left (-50 x^2+20 x^3-2 x^4+e^{-5+x} \left (50 x^2-20 x^3+2 x^4\right )\right ) \log \left (-1+e^{-5+x}\right )+\left (-25+10 x-x^2+e^{-5+x} \left (25-10 x+x^2\right )\right ) \log ^2\left (-1+e^{-5+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-x \left (-e^5 x \left (45-18 x+25 x^3-10 x^4+x^5\right )+e^x \left (45+36 x-18 x^2+25 x^4-10 x^5+x^6\right )\right )-\left (-e^5+e^x\right ) \left (-45+50 x^3-20 x^4+2 x^5\right ) \log \left (-1+e^{-5+x}\right )-\left (-e^5+e^x\right ) (-5+x)^2 x \log ^2\left (-1+e^{-5+x}\right )\right )}{\left (e^5-e^x\right ) (5-x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ &=2 \int \frac {-x \left (-e^5 x \left (45-18 x+25 x^3-10 x^4+x^5\right )+e^x \left (45+36 x-18 x^2+25 x^4-10 x^5+x^6\right )\right )-\left (-e^5+e^x\right ) \left (-45+50 x^3-20 x^4+2 x^5\right ) \log \left (-1+e^{-5+x}\right )-\left (-e^5+e^x\right ) (-5+x)^2 x \log ^2\left (-1+e^{-5+x}\right )}{\left (e^5-e^x\right ) (5-x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ &=2 \int \left (\frac {9 e^5 x}{\left (e^5-e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}+\frac {45 x+36 x^2-18 x^3+25 x^5-10 x^6+x^7-45 \log \left (-1+e^{-5+x}\right )+50 x^3 \log \left (-1+e^{-5+x}\right )-20 x^4 \log \left (-1+e^{-5+x}\right )+2 x^5 \log \left (-1+e^{-5+x}\right )+25 x \log ^2\left (-1+e^{-5+x}\right )-10 x^2 \log ^2\left (-1+e^{-5+x}\right )+x^3 \log ^2\left (-1+e^{-5+x}\right )}{(-5+x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {45 x+36 x^2-18 x^3+25 x^5-10 x^6+x^7-45 \log \left (-1+e^{-5+x}\right )+50 x^3 \log \left (-1+e^{-5+x}\right )-20 x^4 \log \left (-1+e^{-5+x}\right )+2 x^5 \log \left (-1+e^{-5+x}\right )+25 x \log ^2\left (-1+e^{-5+x}\right )-10 x^2 \log ^2\left (-1+e^{-5+x}\right )+x^3 \log ^2\left (-1+e^{-5+x}\right )}{(-5+x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx+\left (18 e^5\right ) \int \frac {x}{\left (e^5-e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ &=2 \int \frac {x \left (45+36 x-18 x^2+25 x^4-10 x^5+x^6\right )+\left (-45+50 x^3-20 x^4+2 x^5\right ) \log \left (-1+e^{-5+x}\right )+(-5+x)^2 x \log ^2\left (-1+e^{-5+x}\right )}{(5-x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx+\left (18 e^5\right ) \int \left (-\frac {1}{\left (-e^5+e^x\right ) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}-\frac {5}{\left (-e^5+e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}\right ) \, dx\\ &=2 \int \left (x-\frac {9 x (1+2 x)}{(-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}-\frac {45}{(-5+x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )}\right ) \, dx-\left (18 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-\left (90 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ &=x^2-18 \int \frac {x (1+2 x)}{(-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-90 \int \frac {1}{(-5+x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )} \, dx-\left (18 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-\left (90 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ &=x^2-18 \int \left (\frac {11}{\left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}+\frac {55}{(-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}+\frac {2 x}{\left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2}\right ) \, dx-90 \int \frac {1}{(-5+x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )} \, dx-\left (18 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-\left (90 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ &=x^2-36 \int \frac {x}{\left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-90 \int \frac {1}{(-5+x)^2 \left (x^2+\log \left (-1+e^{-5+x}\right )\right )} \, dx-198 \int \frac {1}{\left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-990 \int \frac {1}{(-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-\left (18 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx-\left (90 e^5\right ) \int \frac {1}{\left (-e^5+e^x\right ) (-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 32, normalized size = 1.28 \begin {gather*} 2 \left (\frac {x^2}{2}+\frac {9 x}{(-5+x) \left (x^2+\log \left (-1+e^{-5+x}\right )\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.11, size = 52, normalized size = 2.08 \begin {gather*} \frac {x^{5} - 5 \, x^{4} + {\left (x^{3} - 5 \, x^{2}\right )} \log \left (e^{\left (x - 5\right )} - 1\right ) + 18 \, x}{x^{3} - 5 \, x^{2} + {\left (x - 5\right )} \log \left (e^{\left (x - 5\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.81, size = 83, normalized size = 3.32 \begin {gather*} \frac {x^{5} - 5 \, x^{4} + x^{3} \log \left (-e^{5} + e^{x}\right ) - 5 \, x^{3} - 5 \, x^{2} \log \left (-e^{5} + e^{x}\right ) + 25 \, x^{2} + 18 \, x}{x^{3} - 5 \, x^{2} + x \log \left (-e^{5} + e^{x}\right ) - 5 \, x - 5 \, \log \left (-e^{5} + e^{x}\right ) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 1.04
method | result | size |
risch | \(x^{2}+\frac {18 x}{\left (x -5\right ) \left (\ln \left ({\mathrm e}^{x -5}-1\right )+x^{2}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 68, normalized size = 2.72 \begin {gather*} \frac {x^{5} - 5 \, x^{4} - 5 \, x^{3} + 25 \, x^{2} + {\left (x^{3} - 5 \, x^{2}\right )} \log \left (-e^{5} + e^{x}\right ) + 18 \, x}{x^{3} - 5 \, x^{2} + {\left (x - 5\right )} \log \left (-e^{5} + e^{x}\right ) - 5 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.32, size = 192, normalized size = 7.68 \begin {gather*} x^2-\frac {45}{x^3-\frac {19\,x^2}{2}+20\,x+\frac {25}{2}}-\frac {\frac {18\,\left (5\,x\,{\mathrm {e}}^{x-5}+4\,x^2\,{\mathrm {e}}^{x-5}-2\,x^3\,{\mathrm {e}}^{x-5}-5\,x^2+2\,x^3\right )}{{\left (x-5\right )}^2\,\left ({\mathrm {e}}^{x-5}-2\,x+2\,x\,{\mathrm {e}}^{x-5}\right )}-\frac {90\,\ln \left ({\mathrm {e}}^{-5}\,{\mathrm {e}}^x-1\right )\,\left ({\mathrm {e}}^{x-5}-1\right )}{{\left (x-5\right )}^2\,\left ({\mathrm {e}}^{x-5}-2\,x+2\,x\,{\mathrm {e}}^{x-5}\right )}}{\ln \left ({\mathrm {e}}^{-5}\,{\mathrm {e}}^x-1\right )+x^2}+\frac {90\,\left (-2\,x^3+9\,x^2+6\,x-5\right )}{\left (2\,x-{\mathrm {e}}^{x-5}\,\left (2\,x+1\right )\right )\,\left (2\,x+1\right )\,{\left (x-5\right )}^3\,\left (2\,x^2+x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 26, normalized size = 1.04 \begin {gather*} x^{2} + \frac {18 x}{x^{3} - 5 x^{2} + \left (x - 5\right ) \log {\left (e^{x - 5} - 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________