Optimal. Leaf size=36 \[ \frac {4}{x \left (e^{25 (-1+x)^2 x^2}-\left (5+e^{e^{5/x}+x}\right ) x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 164.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {40 x+e^{e^{5/x}+x} \left (-20 e^{5/x}+8 x+4 x^2\right )+e^{25 x^2-50 x^3+25 x^4} \left (-4-200 x^2+600 x^3-400 x^4\right )}{e^{50 x^2-100 x^3+50 x^4} x^2-10 e^{25 x^2-50 x^3+25 x^4} x^3+25 x^4+e^{2 e^{5/x}+2 x} x^4+e^{e^{5/x}+x} \left (-2 e^{25 x^2-50 x^3+25 x^4} x^3+10 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{100 x^3} \left (40 x+e^{e^{5/x}+x} \left (-20 e^{5/x}+8 x+4 x^2\right )+e^{25 x^2-50 x^3+25 x^4} \left (-4-200 x^2+600 x^3-400 x^4\right )\right )}{x^2 \left (e^{25 x^2+25 x^4}-5 e^{50 x^3} x-e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx\\ &=\int \left (\frac {4 e^{50 x^3} \left (1+50 x^2-150 x^3+100 x^4\right )}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )}-\frac {4 e^{100 x^3} \left (5 e^{e^{5/x}+\frac {5}{x}+x}-5 x-e^{e^{5/x}+x} x-e^{e^{5/x}+x} x^2+250 x^3+50 e^{e^{5/x}+x} x^3-750 x^4-150 e^{e^{5/x}+x} x^4+500 x^5+100 e^{e^{5/x}+x} x^5\right )}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}\right ) \, dx\\ &=4 \int \frac {e^{50 x^3} \left (1+50 x^2-150 x^3+100 x^4\right )}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )} \, dx-4 \int \frac {e^{100 x^3} \left (5 e^{e^{5/x}+\frac {5}{x}+x}-5 x-e^{e^{5/x}+x} x-e^{e^{5/x}+x} x^2+250 x^3+50 e^{e^{5/x}+x} x^3-750 x^4-150 e^{e^{5/x}+x} x^4+500 x^5+100 e^{e^{5/x}+x} x^5\right )}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx\\ &=4 \int \left (-\frac {50 e^{50 x^3}}{e^{25 x^2+25 x^4}-5 e^{50 x^3} x-e^{e^{5/x}+x+50 x^3} x}+\frac {e^{50 x^3}}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )}-\frac {150 e^{50 x^3} x}{-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x}+\frac {100 e^{50 x^3} x^2}{-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x}\right ) \, dx-4 \int \frac {e^{100 x^3} \left (5 e^{e^{5/x}+\frac {5}{x}+x}+5 x \left (-1+50 x^2-150 x^3+100 x^4\right )+e^{e^{5/x}+x} x \left (-1-x+50 x^2-150 x^3+100 x^4\right )\right )}{x^2 \left (e^{25 \left (x^2+x^4\right )}-5 e^{50 x^3} x-e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx\\ &=4 \int \frac {e^{50 x^3}}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )} \, dx-4 \int \left (-\frac {e^{e^{5/x}+x+100 x^3}}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}+\frac {5 e^{e^{5/x}+\frac {5}{x}+x+100 x^3}}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}-\frac {5 e^{100 x^3}}{x \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}-\frac {e^{e^{5/x}+x+100 x^3}}{x \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}+\frac {250 e^{100 x^3} x}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}+\frac {50 e^{e^{5/x}+x+100 x^3} x}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}-\frac {750 e^{100 x^3} x^2}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}-\frac {150 e^{e^{5/x}+x+100 x^3} x^2}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}+\frac {500 e^{100 x^3} x^3}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}+\frac {100 e^{e^{5/x}+x+100 x^3} x^3}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2}\right ) \, dx-200 \int \frac {e^{50 x^3}}{e^{25 x^2+25 x^4}-5 e^{50 x^3} x-e^{e^{5/x}+x+50 x^3} x} \, dx+400 \int \frac {e^{50 x^3} x^2}{-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x} \, dx-600 \int \frac {e^{50 x^3} x}{-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x} \, dx\\ &=4 \int \frac {e^{e^{5/x}+x+100 x^3}}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx+4 \int \frac {e^{e^{5/x}+x+100 x^3}}{x \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx+4 \int \frac {e^{50 x^3}}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )} \, dx-20 \int \frac {e^{e^{5/x}+\frac {5}{x}+x+100 x^3}}{x^2 \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx+20 \int \frac {e^{100 x^3}}{x \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx-200 \int \frac {e^{50 x^3}}{e^{25 x^2+25 x^4}-5 e^{50 x^3} x-e^{e^{5/x}+x+50 x^3} x} \, dx-200 \int \frac {e^{e^{5/x}+x+100 x^3} x}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx-400 \int \frac {e^{e^{5/x}+x+100 x^3} x^3}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx+400 \int \frac {e^{50 x^3} x^2}{-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x} \, dx+600 \int \frac {e^{e^{5/x}+x+100 x^3} x^2}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx-600 \int \frac {e^{50 x^3} x}{-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x} \, dx-1000 \int \frac {e^{100 x^3} x}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx-2000 \int \frac {e^{100 x^3} x^3}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx+3000 \int \frac {e^{100 x^3} x^2}{\left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 58, normalized size = 1.61 \begin {gather*} -\frac {4 e^{50 x^3}}{x \left (-e^{25 x^2+25 x^4}+5 e^{50 x^3} x+e^{e^{5/x}+x+50 x^3} x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 43, normalized size = 1.19 \begin {gather*} -\frac {4}{x^{2} e^{\left (x + e^{\frac {5}{x}}\right )} + 5 \, x^{2} - x e^{\left (25 \, x^{4} - 50 \, x^{3} + 25 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 36, normalized size = 1.00
method | result | size |
risch | \(-\frac {4}{x \left (x \,{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}+x}-{\mathrm e}^{25 x^{2} \left (x -1\right )^{2}}+5 x \right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 55, normalized size = 1.53 \begin {gather*} -\frac {4 \, e^{\left (50 \, x^{3}\right )}}{5 \, x^{2} e^{\left (50 \, x^{3}\right )} + x^{2} e^{\left (50 \, x^{3} + x + e^{\frac {5}{x}}\right )} - x e^{\left (25 \, x^{4} + 25 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.18, size = 274, normalized size = 7.61 \begin {gather*} -\frac {20\,{\mathrm {e}}^{\frac {5}{x}+25\,x^2-50\,x^3+25\,x^4}-100\,x\,{\mathrm {e}}^{5/x}+20\,x^3-{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}\,\left (-400\,x^5+600\,x^4-200\,x^3+4\,x^2+4\,x\right )}{\left (5\,x-{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}+x\,{\mathrm {e}}^{x+{\mathrm {e}}^{5/x}}\right )\,\left (5\,x\,{\mathrm {e}}^{\frac {5}{x}+25\,x^2-50\,x^3+25\,x^4}-x^2\,{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}-x^3\,{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}+50\,x^4\,{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}-150\,x^5\,{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}+100\,x^6\,{\mathrm {e}}^{25\,x^4-50\,x^3+25\,x^2}-25\,x^2\,{\mathrm {e}}^{5/x}+5\,x^4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.67, size = 37, normalized size = 1.03 \begin {gather*} - \frac {4}{x^{2} e^{x + e^{\frac {5}{x}}} + 5 x^{2} - x e^{25 x^{4} - 50 x^{3} + 25 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________