Optimal. Leaf size=22 \[ -3+e^{e^4}-e^{1+e^2-x}+x+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 16, normalized size of antiderivative = 0.73, number of steps used = 5, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {14, 2194, 43} \begin {gather*} x-e^{-x+e^2+1}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{1+e^2-x}+\frac {1+x}{x}\right ) \, dx\\ &=\int e^{1+e^2-x} \, dx+\int \frac {1+x}{x} \, dx\\ &=-e^{1+e^2-x}+\int \left (1+\frac {1}{x}\right ) \, dx\\ &=-e^{1+e^2-x}+x+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.73 \begin {gather*} -e^{1+e^2-x}+x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 14, normalized size = 0.64 \begin {gather*} x - e^{\left (-x + e^{2} + 1\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 14, normalized size = 0.64 \begin {gather*} x - e^{\left (-x + e^{2} + 1\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.68
method | result | size |
norman | \(x -{\mathrm e}^{{\mathrm e}^{2}-x +1}+\ln \relax (x )\) | \(15\) |
risch | \(x -{\mathrm e}^{{\mathrm e}^{2}-x +1}+\ln \relax (x )\) | \(15\) |
derivativedivides | \({\mathrm e}^{2} \ln \relax (x )-{\mathrm e}^{{\mathrm e}^{2}+1} \expIntegralEi \left (1, x\right )-{\mathrm e}^{2} {\mathrm e}^{{\mathrm e}^{2}+1} \expIntegralEi \left (1, x\right )+2 \ln \relax (x )-{\mathrm e}^{2}+x -1-\ln \left (-x \right ) {\mathrm e}^{2}-\ln \left (-x \right )-{\mathrm e}^{{\mathrm e}^{2}-x +1}-\left (-1-{\mathrm e}^{2}\right ) {\mathrm e}^{{\mathrm e}^{2}+1} \expIntegralEi \left (1, x\right )\) | \(79\) |
default | \({\mathrm e}^{2} \ln \relax (x )-{\mathrm e}^{{\mathrm e}^{2}+1} \expIntegralEi \left (1, x\right )-{\mathrm e}^{2} {\mathrm e}^{{\mathrm e}^{2}+1} \expIntegralEi \left (1, x\right )+2 \ln \relax (x )-{\mathrm e}^{2}+x -1-\ln \left (-x \right ) {\mathrm e}^{2}-\ln \left (-x \right )-{\mathrm e}^{{\mathrm e}^{2}-x +1}-\left (-1-{\mathrm e}^{2}\right ) {\mathrm e}^{{\mathrm e}^{2}+1} \expIntegralEi \left (1, x\right )\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 14, normalized size = 0.64 \begin {gather*} x - e^{\left (-x + e^{2} + 1\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 15, normalized size = 0.68 \begin {gather*} x+\ln \relax (x)-{\mathrm {e}}^{-x}\,\mathrm {e}\,{\mathrm {e}}^{{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.55 \begin {gather*} x - e^{- x + 1 + e^{2}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________