Optimal. Leaf size=25 \[ -2+x+\frac {e^{-10+x} (-2+x) x}{-16+x}-\frac {\log (x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.86, antiderivative size = 37, normalized size of antiderivative = 1.48, number of steps used = 13, number of rules used = 9, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1594, 27, 6688, 2199, 2194, 2177, 2178, 2176, 2304} \begin {gather*} e^{x-10} x+x+14 e^{x-10}-\frac {224 e^{x-10}}{16-x}-\frac {\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2304
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-256+32 x+255 x^2-32 x^3+x^4+e^{-10+x} \left (32 x^2-17 x^4+x^5\right )+\left (256-32 x+x^2\right ) \log (x)}{x^2 \left (256-32 x+x^2\right )} \, dx\\ &=\int \frac {-256+32 x+255 x^2-32 x^3+x^4+e^{-10+x} \left (32 x^2-17 x^4+x^5\right )+\left (256-32 x+x^2\right ) \log (x)}{(-16+x)^2 x^2} \, dx\\ &=\int \left (1-\frac {1}{x^2}+\frac {e^{-10+x} \left (32-17 x^2+x^3\right )}{(-16+x)^2}+\frac {\log (x)}{x^2}\right ) \, dx\\ &=\frac {1}{x}+x+\int \frac {e^{-10+x} \left (32-17 x^2+x^3\right )}{(-16+x)^2} \, dx+\int \frac {\log (x)}{x^2} \, dx\\ &=x-\frac {\log (x)}{x}+\int \left (15 e^{-10+x}-\frac {224 e^{-10+x}}{(-16+x)^2}+\frac {224 e^{-10+x}}{-16+x}+e^{-10+x} x\right ) \, dx\\ &=x-\frac {\log (x)}{x}+15 \int e^{-10+x} \, dx-224 \int \frac {e^{-10+x}}{(-16+x)^2} \, dx+224 \int \frac {e^{-10+x}}{-16+x} \, dx+\int e^{-10+x} x \, dx\\ &=15 e^{-10+x}-\frac {224 e^{-10+x}}{16-x}+x+e^{-10+x} x+224 e^6 \text {Ei}(-16+x)-\frac {\log (x)}{x}-224 \int \frac {e^{-10+x}}{-16+x} \, dx-\int e^{-10+x} \, dx\\ &=14 e^{-10+x}-\frac {224 e^{-10+x}}{16-x}+x+e^{-10+x} x-\frac {\log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 24, normalized size = 0.96 \begin {gather*} x+\frac {e^{-10+x} (-2+x) x}{-16+x}-\frac {\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 40, normalized size = 1.60 \begin {gather*} \frac {x^{3} - 16 \, x^{2} + {\left (x^{3} - 2 \, x^{2}\right )} e^{\left (x - 10\right )} - {\left (x - 16\right )} \log \relax (x)}{x^{2} - 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 55, normalized size = 2.20 \begin {gather*} \frac {x^{3} e^{10} + x^{3} e^{x} - 16 \, x^{2} e^{10} - 2 \, x^{2} e^{x} - x e^{10} \log \relax (x) + 16 \, e^{10} \log \relax (x)}{x^{2} e^{10} - 16 \, x e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 1.24
method | result | size |
risch | \(-\frac {\ln \relax (x )}{x}+\frac {x \left (x \,{\mathrm e}^{x -10}+x -2 \,{\mathrm e}^{x -10}-16\right )}{x -16}\) | \(31\) |
default | \(x -\frac {\ln \relax (x )}{x}+\left (x -10\right ) {\mathrm e}^{x -10}+24 \,{\mathrm e}^{x -10}+\frac {224 \,{\mathrm e}^{x -10}}{x -16}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \frac {32 \, e^{6} E_{2}\left (-x + 16\right )}{x - 16} + \frac {2 \, {\left (x - 8\right )}}{x^{2} - 16 \, x} - \frac {\log \relax (x) + 1}{x} - \frac {1}{x - 16} + \int \frac {{\left (x^{3} - 17 \, x^{2}\right )} e^{x}}{x^{2} e^{10} - 32 \, x e^{10} + 256 \, e^{10}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.76, size = 29, normalized size = 1.16 \begin {gather*} x-\frac {\ln \relax (x)}{x}-\frac {{\mathrm {e}}^{x-10}\,\left (2\,x-x^2\right )}{x-16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.80 \begin {gather*} x + \frac {\left (x^{2} - 2 x\right ) e^{x - 10}}{x - 16} - \frac {\log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________