Optimal. Leaf size=25 \[ 1+e^{\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}}+x \]
________________________________________________________________________________________
Rubi [A] time = 2.19, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 3, integrand size = 119, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6742, 6688, 6706} \begin {gather*} e^{\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6688
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {4 e^{-5+\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}} x^2 \left (2 x+3 e^5 \log \left (\left (e^5-x\right )^2\right )-3 x \log \left (\left (e^5-x\right )^2\right )\right )}{\left (e^5-x\right ) \log ^2\left (\left (e^5-x\right )^2\right )}\right ) \, dx\\ &=x+4 \int \frac {e^{-5+\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}} x^2 \left (2 x+3 e^5 \log \left (\left (e^5-x\right )^2\right )-3 x \log \left (\left (e^5-x\right )^2\right )\right )}{\left (e^5-x\right ) \log ^2\left (\left (e^5-x\right )^2\right )} \, dx\\ &=x+4 \int \frac {e^{-5+\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}} x^2 \left (2 x+3 \left (e^5-x\right ) \log \left (\left (e^5-x\right )^2\right )\right )}{\left (e^5-x\right ) \log ^2\left (\left (e^5-x\right )^2\right )} \, dx\\ &=e^{\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.27, size = 29, normalized size = 1.16 \begin {gather*} -e^5+e^{\frac {4 x^3}{e^5 \log \left (\left (e^5-x\right )^2\right )}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 24, normalized size = 0.96 \begin {gather*} x + e^{\left (\frac {4 \, x^{3} e^{\left (-5\right )}}{\log \left (x^{2} - 2 \, x e^{5} + e^{10}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 25, normalized size = 1.00
method | result | size |
risch | \(x +{\mathrm e}^{\frac {4 x^{3} {\mathrm e}^{-5}}{\ln \left ({\mathrm e}^{10}-2 x \,{\mathrm e}^{5}+x^{2}\right )}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.05, size = 24, normalized size = 0.96 \begin {gather*} x+{\mathrm {e}}^{\frac {4\,x^3\,{\mathrm {e}}^{-5}}{\ln \left (x^2-2\,{\mathrm {e}}^5\,x+{\mathrm {e}}^{10}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 26, normalized size = 1.04 \begin {gather*} x + e^{\frac {4 x^{3}}{e^{5} \log {\left (x^{2} - 2 x e^{5} + e^{10} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________