Optimal. Leaf size=33 \[ e^{x+\frac {\log \left (e^{4+x}+\frac {1}{4} \left (x-4 x \left (\frac {3}{2 x}+x\right )\right )\right )}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 6.94, antiderivative size = 30, normalized size of antiderivative = 0.91, number of steps used = 1, number of rules used = 1, integrand size = 125, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {6706} \begin {gather*} 4^{-1/x} e^x \left (-4 x^2+x+4 e^{x+4}-6\right )^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4^{-1/x} e^x \left (-6+4 e^{4+x}+x-4 x^2\right )^{\frac {1}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 30, normalized size = 0.91 \begin {gather*} 4^{-1/x} e^x \left (-6+4 e^{4+x}+x-4 x^2\right )^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 24, normalized size = 0.73 \begin {gather*} e^{\left (\frac {x^{2} + \log \left (-x^{2} + \frac {1}{4} \, x + e^{\left (x + 4\right )} - \frac {3}{2}\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.63, size = 22, normalized size = 0.67 \begin {gather*} e^{\left (x + \frac {\log \left (-x^{2} + \frac {1}{4} \, x + e^{\left (x + 4\right )} - \frac {3}{2}\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.67
method | result | size |
risch | \(\left ({\mathrm e}^{4+x}-x^{2}+\frac {x}{4}-\frac {3}{2}\right )^{\frac {1}{x}} {\mathrm e}^{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 29, normalized size = 0.88 \begin {gather*} e^{\left (x - \frac {2 \, \log \relax (2)}{x} + \frac {\log \left (-4 \, x^{2} + x + 4 \, e^{\left (x + 4\right )} - 6\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 21, normalized size = 0.64 \begin {gather*} {\mathrm {e}}^x\,{\left (\frac {x}{4}+{\mathrm {e}}^{x+4}-x^2-\frac {3}{2}\right )}^{1/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________