Optimal. Leaf size=14 \[ \log \left (\frac {\left (1+e^{3+x}\right )^2}{x^4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 15, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6742, 2282, 36, 29, 31, 43} \begin {gather*} 2 \log \left (e^{x+3}+1\right )-4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 43
Rule 2282
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{1+e^{3+x}}+\frac {2 (-2+x)}{x}\right ) \, dx\\ &=-\left (2 \int \frac {1}{1+e^{3+x}} \, dx\right )+2 \int \frac {-2+x}{x} \, dx\\ &=2 \int \left (1-\frac {2}{x}\right ) \, dx-2 \operatorname {Subst}\left (\int \frac {1}{x (1+x)} \, dx,x,e^{3+x}\right )\\ &=2 x-4 \log (x)-2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{3+x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,e^{3+x}\right )\\ &=2 \log \left (1+e^{3+x}\right )-4 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 15, normalized size = 1.07 \begin {gather*} 2 \left (\log \left (1+e^{3+x}\right )-2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 14, normalized size = 1.00 \begin {gather*} -4 \, \log \relax (x) + 2 \, \log \left (e^{\left (x + 3\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 14, normalized size = 1.00 \begin {gather*} -4 \, \log \relax (x) + 2 \, \log \left (e^{\left (x + 3\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 15, normalized size = 1.07
method | result | size |
norman | \(-4 \ln \relax (x )+2 \ln \left ({\mathrm e}^{3+x}+1\right )\) | \(15\) |
risch | \(-4 \ln \relax (x )-6+2 \ln \left ({\mathrm e}^{3+x}+1\right )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 1.21 \begin {gather*} 2 \, \log \left ({\left (e^{\left (x + 3\right )} + 1\right )} e^{\left (-3\right )}\right ) - 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 15, normalized size = 1.07 \begin {gather*} 2\,\ln \left ({\mathrm {e}}^3\,{\mathrm {e}}^x+1\right )-4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 1.00 \begin {gather*} - 4 \log {\relax (x )} + 2 \log {\left (e^{x + 3} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________