Optimal. Leaf size=32 \[ -e^{5 x}+4 \log \left (-3 e^{-x}+x\right ) \log \left (-x+\frac {x^2}{3}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5 x} \left (-45 x+15 x^2+e^x \left (15 x^2-5 x^3\right )\right )+\left (36-24 x+e^x \left (-12 x+8 x^2\right )\right ) \log \left (e^{-x} \left (-3+e^x x\right )\right )+\left (-36 x+12 x^2+e^x \left (-12 x+4 x^2\right )\right ) \log \left (\frac {1}{3} \left (-3 x+x^2\right )\right )}{9 x-3 x^2+e^x \left (-3 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-5 e^{5 x}+\frac {4 \left (3+e^x\right ) \log \left (\frac {1}{3} (-3+x) x\right )}{-3+e^x x}+\frac {4 (-3+2 x) \log \left (-3 e^{-x}+x\right )}{(-3+x) x}\right ) \, dx\\ &=4 \int \frac {\left (3+e^x\right ) \log \left (\frac {1}{3} (-3+x) x\right )}{-3+e^x x} \, dx+4 \int \frac {(-3+2 x) \log \left (-3 e^{-x}+x\right )}{(-3+x) x} \, dx-5 \int e^{5 x} \, dx\\ &=-e^{5 x}+4 \int \left (\frac {\log \left (\frac {1}{3} (-3+x) x\right )}{x}+\frac {3 (1+x) \log \left (\frac {1}{3} (-3+x) x\right )}{x \left (-3+e^x x\right )}\right ) \, dx+4 \int \left (\frac {\log \left (-3 e^{-x}+x\right )}{-3+x}+\frac {\log \left (-3 e^{-x}+x\right )}{x}\right ) \, dx\\ &=-e^{5 x}+4 \int \frac {\log \left (\frac {1}{3} (-3+x) x\right )}{x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{x} \, dx+12 \int \frac {(1+x) \log \left (\frac {1}{3} (-3+x) x\right )}{x \left (-3+e^x x\right )} \, dx\\ &=-e^{5 x}+4 \log (x) \log \left (-\frac {1}{3} (3-x) x\right )-4 \int \frac {\log (x)}{-3+x} \, dx-4 \int \frac {\log (x)}{x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{x} \, dx-12 \int \frac {(3-2 x) \left (\int \frac {1}{-3+e^x x} \, dx+\int \frac {1}{x \left (-3+e^x x\right )} \, dx\right )}{(3-x) x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{-3+e^x x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{x \left (-3+e^x x\right )} \, dx\\ &=-e^{5 x}-4 \log (3) \log (-3+x)-2 \log ^2(x)+4 \log (x) \log \left (-\frac {1}{3} (3-x) x\right )-4 \int \frac {\log \left (\frac {x}{3}\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{x} \, dx-12 \int \left (\frac {(-3+2 x) \int \frac {1}{-3+e^x x} \, dx}{(-3+x) x}+\frac {(-3+2 x) \int \frac {1}{x \left (-3+e^x x\right )} \, dx}{(-3+x) x}\right ) \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{-3+e^x x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{x \left (-3+e^x x\right )} \, dx\\ &=-e^{5 x}-4 \log (3) \log (-3+x)-2 \log ^2(x)+4 \log (x) \log \left (-\frac {1}{3} (3-x) x\right )+4 \text {Li}_2\left (1-\frac {x}{3}\right )+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{x} \, dx-12 \int \frac {(-3+2 x) \int \frac {1}{-3+e^x x} \, dx}{(-3+x) x} \, dx-12 \int \frac {(-3+2 x) \int \frac {1}{x \left (-3+e^x x\right )} \, dx}{(-3+x) x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{-3+e^x x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{x \left (-3+e^x x\right )} \, dx\\ &=-e^{5 x}-4 \log (3) \log (-3+x)-2 \log ^2(x)+4 \log (x) \log \left (-\frac {1}{3} (3-x) x\right )+4 \text {Li}_2\left (1-\frac {x}{3}\right )+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{x} \, dx-12 \int \left (\frac {\int \frac {1}{-3+e^x x} \, dx}{-3+x}+\frac {\int \frac {1}{-3+e^x x} \, dx}{x}\right ) \, dx-12 \int \left (\frac {\int \frac {1}{x \left (-3+e^x x\right )} \, dx}{-3+x}+\frac {\int \frac {1}{x \left (-3+e^x x\right )} \, dx}{x}\right ) \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{-3+e^x x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{x \left (-3+e^x x\right )} \, dx\\ &=-e^{5 x}-4 \log (3) \log (-3+x)-2 \log ^2(x)+4 \log (x) \log \left (-\frac {1}{3} (3-x) x\right )+4 \text {Li}_2\left (1-\frac {x}{3}\right )+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{-3+x} \, dx+4 \int \frac {\log \left (-3 e^{-x}+x\right )}{x} \, dx-12 \int \frac {\int \frac {1}{-3+e^x x} \, dx}{-3+x} \, dx-12 \int \frac {\int \frac {1}{-3+e^x x} \, dx}{x} \, dx-12 \int \frac {\int \frac {1}{x \left (-3+e^x x\right )} \, dx}{-3+x} \, dx-12 \int \frac {\int \frac {1}{x \left (-3+e^x x\right )} \, dx}{x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{-3+e^x x} \, dx+\left (12 \log \left (\frac {1}{3} (-3+x) x\right )\right ) \int \frac {1}{x \left (-3+e^x x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.34, size = 95, normalized size = 2.97 \begin {gather*} -e^{5 x}-4 x \log \left (\frac {1}{3} (-3+x) x\right )+4 \log (3-x) \left (x+\log \left (-3 e^{-x}+x\right )-\log \left (-3+e^x x\right )\right )+4 \log (x) \left (x+\log \left (-3 e^{-x}+x\right )-\log \left (-3+e^x x\right )\right )+4 \log \left (\frac {1}{3} (-3+x) x\right ) \log \left (-3+e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 31, normalized size = 0.97 \begin {gather*} 4 \, \log \left (\frac {1}{3} \, x^{2} - x\right ) \log \left ({\left (x e^{x} - 3\right )} e^{\left (-x\right )}\right ) - e^{\left (5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 59, normalized size = 1.84 \begin {gather*} 4 \, x \log \relax (3) - 4 \, \log \relax (3) \log \left (x e^{x} - 3\right ) - 4 \, x \log \left (x - 3\right ) + 4 \, \log \left (x e^{x} - 3\right ) \log \left (x - 3\right ) - 4 \, x \log \relax (x) + 4 \, \log \left (x e^{x} - 3\right ) \log \relax (x) - e^{\left (5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (8 x^{2}-12 x \right ) {\mathrm e}^{x}-24 x +36\right ) \ln \left (\left ({\mathrm e}^{x} x -3\right ) {\mathrm e}^{-x}\right )+\left (\left (4 x^{2}-12 x \right ) {\mathrm e}^{x}+12 x^{2}-36 x \right ) \ln \left (\frac {1}{3} x^{2}-x \right )+\left (\left (-5 x^{3}+15 x^{2}\right ) {\mathrm e}^{x}+15 x^{2}-45 x \right ) {\mathrm e}^{5 x}}{\left (x^{3}-3 x^{2}\right ) {\mathrm e}^{x}-3 x^{2}+9 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 58, normalized size = 1.81 \begin {gather*} 4 \, x \log \relax (3) + 4 \, {\left (\log \left (x - 3\right ) + \log \relax (x)\right )} \log \left (x e^{x} - 3\right ) - 4 \, x \log \left (x - 3\right ) - 4 \, {\left (x + \log \relax (3)\right )} \log \relax (x) - 4 \, \log \relax (3) \log \left (\frac {x e^{x} - 3}{x}\right ) - e^{\left (5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.04, size = 28, normalized size = 0.88 \begin {gather*} 4\,\ln \left (\frac {x^2}{3}-x\right )\,\ln \left (x-3\,{\mathrm {e}}^{-x}\right )-{\mathrm {e}}^{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.85, size = 26, normalized size = 0.81 \begin {gather*} - e^{5 x} + 4 \log {\left (\left (x e^{x} - 3\right ) e^{- x} \right )} \log {\left (\frac {x^{2}}{3} - x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________