Optimal. Leaf size=18 \[ 629+\left (e^3-\frac {x^3}{5}\right ) (2+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.28, number of steps used = 6, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {12, 14, 2304} \begin {gather*} -\frac {2 x^3}{5}-\frac {1}{5} x^3 \log (x)+e^3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {5 e^3-7 x^3-3 x^3 \log (x)}{x} \, dx\\ &=\frac {1}{5} \int \left (\frac {5 e^3-7 x^3}{x}-3 x^2 \log (x)\right ) \, dx\\ &=\frac {1}{5} \int \frac {5 e^3-7 x^3}{x} \, dx-\frac {3}{5} \int x^2 \log (x) \, dx\\ &=\frac {x^3}{15}-\frac {1}{5} x^3 \log (x)+\frac {1}{5} \int \left (\frac {5 e^3}{x}-7 x^2\right ) \, dx\\ &=-\frac {2 x^3}{5}+e^3 \log (x)-\frac {1}{5} x^3 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 23, normalized size = 1.28 \begin {gather*} -\frac {2 x^3}{5}+e^3 \log (x)-\frac {1}{5} x^3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 18, normalized size = 1.00 \begin {gather*} -\frac {2}{5} \, x^{3} - \frac {1}{5} \, {\left (x^{3} - 5 \, e^{3}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 18, normalized size = 1.00 \begin {gather*} -\frac {1}{5} \, x^{3} \log \relax (x) - \frac {2}{5} \, x^{3} + e^{3} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 1.06
method | result | size |
default | \(-\frac {x^{3} \ln \relax (x )}{5}-\frac {2 x^{3}}{5}+\ln \relax (x ) {\mathrm e}^{3}\) | \(19\) |
norman | \(-\frac {x^{3} \ln \relax (x )}{5}-\frac {2 x^{3}}{5}+\ln \relax (x ) {\mathrm e}^{3}\) | \(19\) |
risch | \(-\frac {x^{3} \ln \relax (x )}{5}-\frac {2 x^{3}}{5}+\ln \relax (x ) {\mathrm e}^{3}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 1.00 \begin {gather*} -\frac {1}{5} \, x^{3} \log \relax (x) - \frac {2}{5} \, x^{3} + e^{3} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.68, size = 18, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^3\,\ln \relax (x)-\frac {x^3\,\ln \relax (x)}{5}-\frac {2\,x^3}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 1.11 \begin {gather*} - \frac {x^{3} \log {\relax (x )}}{5} - \frac {2 x^{3}}{5} + e^{3} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________