Optimal. Leaf size=26 \[ x-\frac {\frac {5}{4}+x-\frac {x}{5+\log (2)}}{16 e^4 x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 32, normalized size of antiderivative = 1.23, number of steps used = 4, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6, 12, 14} \begin {gather*} -\frac {5}{64 e^4 x^2}+x-\frac {8+\log (4)}{32 e^4 x (5+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25+8 x+160 e^4 x^3+\left (5+2 x+32 e^4 x^3\right ) \log (2)}{e^4 x^3 (160+32 \log (2))} \, dx\\ &=\frac {\int \frac {25+8 x+160 e^4 x^3+\left (5+2 x+32 e^4 x^3\right ) \log (2)}{x^3} \, dx}{32 e^4 (5+\log (2))}\\ &=\frac {\int \left (32 e^4 (5+\log (2))+\frac {5 (5+\log (2))}{x^3}+\frac {8+\log (4)}{x^2}\right ) \, dx}{32 e^4 (5+\log (2))}\\ &=-\frac {5}{64 e^4 x^2}+x-\frac {8+\log (4)}{32 e^4 x (5+\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 39, normalized size = 1.50 \begin {gather*} -\frac {25-64 e^4 x^3 (5+\log (2))+2 x (8+\log (4))+\log (32)}{64 e^4 x^2 (5+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 47, normalized size = 1.81 \begin {gather*} \frac {320 \, x^{3} e^{4} + {\left (64 \, x^{3} e^{4} - 4 \, x - 5\right )} \log \relax (2) - 16 \, x - 25}{64 \, {\left (x^{2} e^{4} \log \relax (2) + 5 \, x^{2} e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 57, normalized size = 2.19 \begin {gather*} \frac {x e^{4} \log \relax (2) + 5 \, x e^{4}}{e^{4} \log \relax (2) + 5 \, e^{4}} - \frac {4 \, x \log \relax (2) + 16 \, x + 5 \, \log \relax (2) + 25}{64 \, {\left (e^{4} \log \relax (2) + 5 \, e^{4}\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.12
method | result | size |
risch | \(x +\frac {\left (\left (-\frac {\ln \relax (2)}{16}-\frac {1}{4}\right ) x -\frac {5 \ln \relax (2)}{64}-\frac {25}{64}\right ) {\mathrm e}^{-4}}{x^{2} \left (\ln \relax (2)+5\right )}\) | \(29\) |
norman | \(\frac {\left (x^{3} {\mathrm e}^{2}-\frac {5 \,{\mathrm e}^{-2}}{64}-\frac {\left (4+\ln \relax (2)\right ) {\mathrm e}^{-2} x}{16 \left (\ln \relax (2)+5\right )}\right ) {\mathrm e}^{-2}}{x^{2}}\) | \(39\) |
default | \(\frac {{\mathrm e}^{-4} \left (32 x \,{\mathrm e}^{4} \ln \relax (2)+160 x \,{\mathrm e}^{4}-\frac {5 \ln \relax (2)+25}{2 x^{2}}-\frac {8+2 \ln \relax (2)}{x}\right )}{32 \ln \relax (2)+160}\) | \(48\) |
gosper | \(\frac {\left (64 x^{3} {\mathrm e}^{4} \ln \relax (2)+320 x^{3} {\mathrm e}^{4}-4 x \ln \relax (2)-5 \ln \relax (2)-16 x -25\right ) {\mathrm e}^{-4}}{64 x^{2} \left (\ln \relax (2)+5\right )}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 32, normalized size = 1.23 \begin {gather*} x - \frac {4 \, x {\left (\log \relax (2) + 4\right )} + 5 \, \log \relax (2) + 25}{64 \, {\left (e^{4} \log \relax (2) + 5 \, e^{4}\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 32, normalized size = 1.23 \begin {gather*} x-\frac {\frac {\ln \left (32\right )}{2}+x\,\left (\ln \relax (4)+8\right )+\frac {25}{2}}{x^2\,\left (160\,{\mathrm {e}}^4+32\,{\mathrm {e}}^4\,\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 49, normalized size = 1.88 \begin {gather*} \frac {x \left (32 e^{4} \log {\relax (2 )} + 160 e^{4}\right ) + \frac {x \left (-16 - 4 \log {\relax (2 )}\right ) - 25 - 5 \log {\relax (2 )}}{2 x^{2}}}{32 e^{4} \log {\relax (2 )} + 160 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________