Optimal. Leaf size=26 \[ \left (\frac {256}{x^3}-x\right ) \left (-3+e^9-x-x (10+2 x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 42, normalized size of antiderivative = 1.62, number of steps used = 2, number of rules used = 1, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {14} \begin {gather*} 2 x^3-\frac {256 \left (3-e^9\right )}{x^3}+11 x^2-\frac {2816}{x^2}+\left (3-e^9\right ) x-\frac {512}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 \left (1-\frac {e^9}{3}\right )-\frac {768 \left (-3+e^9\right )}{x^4}+\frac {5632}{x^3}+\frac {512}{x^2}+22 x+6 x^2\right ) \, dx\\ &=-\frac {256 \left (3-e^9\right )}{x^3}-\frac {2816}{x^2}-\frac {512}{x}+\left (3-e^9\right ) x+11 x^2+2 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 40, normalized size = 1.54 \begin {gather*} \frac {256 \left (-3+e^9\right )}{x^3}-\frac {2816}{x^2}-\frac {512}{x}+\left (3-e^9\right ) x+11 x^2+2 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 38, normalized size = 1.46 \begin {gather*} \frac {2 \, x^{6} + 11 \, x^{5} + 3 \, x^{4} - 512 \, x^{2} - {\left (x^{4} - 256\right )} e^{9} - 2816 \, x - 768}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 38, normalized size = 1.46 \begin {gather*} 2 \, x^{3} + 11 \, x^{2} - x e^{9} + 3 \, x - \frac {256 \, {\left (2 \, x^{2} + 11 \, x - e^{9} + 3\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 38, normalized size = 1.46
method | result | size |
risch | \(2 x^{3}-x \,{\mathrm e}^{9}+11 x^{2}+3 x +\frac {-512 x^{2}+256 \,{\mathrm e}^{9}-2816 x -768}{x^{3}}\) | \(38\) |
norman | \(\frac {\left (-{\mathrm e}^{9}+3\right ) x^{4}-2816 x -512 x^{2}+11 x^{5}+2 x^{6}+256 \,{\mathrm e}^{9}-768}{x^{3}}\) | \(39\) |
gosper | \(-\frac {-2 x^{6}+x^{4} {\mathrm e}^{9}-11 x^{5}-3 x^{4}+512 x^{2}-256 \,{\mathrm e}^{9}+2816 x +768}{x^{3}}\) | \(41\) |
default | \(2 x^{3}+11 x^{2}-x \,{\mathrm e}^{9}+3 x -\frac {2816}{x^{2}}-\frac {512}{x}-\frac {-768 \,{\mathrm e}^{9}+2304}{3 x^{3}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 37, normalized size = 1.42 \begin {gather*} 2 \, x^{3} + 11 \, x^{2} - x {\left (e^{9} - 3\right )} - \frac {256 \, {\left (2 \, x^{2} + 11 \, x - e^{9} + 3\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.57, size = 37, normalized size = 1.42 \begin {gather*} 11\,x^2-x\,\left ({\mathrm {e}}^9-3\right )-\frac {512\,x^2+2816\,x-256\,{\mathrm {e}}^9+768}{x^3}+2\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 34, normalized size = 1.31 \begin {gather*} 2 x^{3} + 11 x^{2} + x \left (3 - e^{9}\right ) + \frac {- 512 x^{2} - 2816 x - 768 + 256 e^{9}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________