Optimal. Leaf size=23 \[ 3 \left (3-e^4\right ) \log ^2\left (\left (2 e^2-x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 57, normalized size of antiderivative = 2.48, number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {12, 2524, 27, 21, 2390, 2301} \begin {gather*} 12 \left (3-e^4\right ) \log \left (2 e^2-x\right ) \log \left (x^2-4 e^2 x+4 e^4\right )-12 \left (3-e^4\right ) \log ^2\left (2 e^2-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 21
Rule 27
Rule 2301
Rule 2390
Rule 2524
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (12 \left (3-e^4\right )\right ) \int \frac {\log \left (4 e^4-4 e^2 x+x^2\right )}{2 e^2-x} \, dx\right )\\ &=12 \left (3-e^4\right ) \log \left (2 e^2-x\right ) \log \left (4 e^4-4 e^2 x+x^2\right )-\left (12 \left (3-e^4\right )\right ) \int \frac {\left (-4 e^2+2 x\right ) \log \left (2 e^2-x\right )}{4 e^4-4 e^2 x+x^2} \, dx\\ &=12 \left (3-e^4\right ) \log \left (2 e^2-x\right ) \log \left (4 e^4-4 e^2 x+x^2\right )-\left (12 \left (3-e^4\right )\right ) \int \frac {\left (-4 e^2+2 x\right ) \log \left (2 e^2-x\right )}{\left (-2 e^2+x\right )^2} \, dx\\ &=12 \left (3-e^4\right ) \log \left (2 e^2-x\right ) \log \left (4 e^4-4 e^2 x+x^2\right )-\left (24 \left (3-e^4\right )\right ) \int \frac {\log \left (2 e^2-x\right )}{-2 e^2+x} \, dx\\ &=12 \left (3-e^4\right ) \log \left (2 e^2-x\right ) \log \left (4 e^4-4 e^2 x+x^2\right )-\left (24 \left (3-e^4\right )\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,2 e^2-x\right )\\ &=-12 \left (3-e^4\right ) \log ^2\left (2 e^2-x\right )+12 \left (3-e^4\right ) \log \left (2 e^2-x\right ) \log \left (4 e^4-4 e^2 x+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.83 \begin {gather*} -3 \left (-3+e^4\right ) \log ^2\left (\left (-2 e^2+x\right )^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 22, normalized size = 0.96 \begin {gather*} -3 \, {\left (e^{4} - 3\right )} \log \left (x^{2} - 4 \, x e^{2} + 4 \, e^{4}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 22, normalized size = 0.96 \begin {gather*} -3 \, {\left (e^{4} - 3\right )} \log \left (x^{2} - 4 \, x e^{2} + 4 \, e^{4}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 26, normalized size = 1.13
method | result | size |
norman | \(\left (-3 \,{\mathrm e}^{4}+9\right ) \ln \left (4 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{2} x +x^{2}\right )^{2}\) | \(26\) |
default | \(\left (12 \,{\mathrm e}^{4}-36\right ) \left (-\ln \left (-2 \,{\mathrm e}^{2}+x \right ) \ln \left (4 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{2} x +x^{2}\right )+\ln \left (-2 \,{\mathrm e}^{2}+x \right )^{2}\right )\) | \(43\) |
risch | \(-\left (12 \,{\mathrm e}^{4}-36\right ) \ln \left (-2 \,{\mathrm e}^{2}+x \right ) \ln \left (4 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{2} x +x^{2}\right )+12 \ln \left (-2 \,{\mathrm e}^{2}+x \right )^{2} {\mathrm e}^{4}-36 \ln \left (-2 \,{\mathrm e}^{2}+x \right )^{2}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 68, normalized size = 2.96 \begin {gather*} -12 \, {\left (e^{4} - 3\right )} \log \left (x^{2} - 4 \, x e^{2} + 4 \, e^{4}\right ) \log \left (x - 2 \, e^{2}\right ) + 12 \, {\left (\log \left (x^{2} - 4 \, x e^{2} + 4 \, e^{4}\right ) \log \left (x - 2 \, e^{2}\right ) - \log \left (x - 2 \, e^{2}\right )^{2}\right )} {\left (e^{4} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.98, size = 24, normalized size = 1.04 \begin {gather*} -{\ln \left (x^2-4\,{\mathrm {e}}^2\,x+4\,{\mathrm {e}}^4\right )}^2\,\left (3\,{\mathrm {e}}^4-9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 1.04 \begin {gather*} \left (9 - 3 e^{4}\right ) \log {\left (x^{2} - 4 x e^{2} + 4 e^{4} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________