Optimal. Leaf size=23 \[ \log \left (-\frac {1}{2} e^{-4 x^2} \left (1-\frac {e^2}{x}\right ) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 14, normalized size of antiderivative = 0.61, number of steps used = 2, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {698} \begin {gather*} \log \left (e^2-x\right )-4 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 698
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-8 x+\frac {1}{-e^2+x}\right ) \, dx\\ &=-4 x^2+\log \left (e^2-x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.83 \begin {gather*} 4 e^4-4 x^2+\log \left (e^2-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 13, normalized size = 0.57 \begin {gather*} -4 \, x^{2} + \log \left (x - e^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 14, normalized size = 0.61 \begin {gather*} -4 \, x^{2} + \log \left ({\left | x - e^{2} \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 14, normalized size = 0.61
method | result | size |
default | \(-4 x^{2}+\ln \left (x -{\mathrm e}^{2}\right )\) | \(14\) |
norman | \(-4 x^{2}+\ln \left ({\mathrm e}^{2}-x \right )\) | \(14\) |
risch | \(-4 x^{2}+\ln \left (x -{\mathrm e}^{2}\right )\) | \(14\) |
meijerg | \(-8 \,{\mathrm e}^{4} \left (-x \,{\mathrm e}^{-2}-\ln \left (1-x \,{\mathrm e}^{-2}\right )\right )-8 \,{\mathrm e}^{4} \left (\frac {x \,{\mathrm e}^{-2} \left (3 x \,{\mathrm e}^{-2}+6\right )}{6}+\ln \left (1-x \,{\mathrm e}^{-2}\right )\right )+\ln \left (1-x \,{\mathrm e}^{-2}\right )\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 13, normalized size = 0.57 \begin {gather*} -4 \, x^{2} + \log \left (x - e^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 13, normalized size = 0.57 \begin {gather*} \ln \left (x-{\mathrm {e}}^2\right )-4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 10, normalized size = 0.43 \begin {gather*} - 4 x^{2} + \log {\left (x - e^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________