Optimal. Leaf size=22 \[ -e^{\frac {x^3}{e^4 \left (4+x^2\right )}}+2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.066, Rules used = {12, 28, 6688, 6706} \begin {gather*} 2 x-e^{\frac {x^3}{e^4 \left (x^2+4\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{\frac {x^3}{e^4 \left (4+x^2\right )}} \left (-12 x^2-x^4\right )+e^4 \left (32+16 x^2+2 x^4\right )}{16+8 x^2+x^4} \, dx}{e^4}\\ &=\frac {\int \frac {e^{\frac {x^3}{e^4 \left (4+x^2\right )}} \left (-12 x^2-x^4\right )+e^4 \left (32+16 x^2+2 x^4\right )}{\left (4+x^2\right )^2} \, dx}{e^4}\\ &=\frac {\int \left (2 e^4-\frac {e^{\frac {x^3}{e^4 \left (4+x^2\right )}} x^2 \left (12+x^2\right )}{\left (4+x^2\right )^2}\right ) \, dx}{e^4}\\ &=2 x-\frac {\int \frac {e^{\frac {x^3}{e^4 \left (4+x^2\right )}} x^2 \left (12+x^2\right )}{\left (4+x^2\right )^2} \, dx}{e^4}\\ &=-e^{\frac {x^3}{e^4 \left (4+x^2\right )}}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 27, normalized size = 1.23 \begin {gather*} -e^{\frac {x}{e^4}-\frac {4 x}{e^4 \left (4+x^2\right )}}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 0.91 \begin {gather*} 2 \, x - e^{\left (\frac {x^{3} e^{\left (-4\right )}}{x^{2} + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 31, normalized size = 1.41 \begin {gather*} {\left (2 \, x e^{4} - e^{\left (\frac {x^{3}}{x^{2} e^{4} + 4 \, e^{4}} + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 21, normalized size = 0.95
method | result | size |
risch | \(2 x -{\mathrm e}^{\frac {x^{3} {\mathrm e}^{-4}}{x^{2}+4}}\) | \(21\) |
norman | \(\frac {8 x +2 x^{3}-{\mathrm e}^{\frac {x^{3} {\mathrm e}^{-4}}{x^{2}+4}} x^{2}-4 \,{\mathrm e}^{\frac {x^{3} {\mathrm e}^{-4}}{x^{2}+4}}}{x^{2}+4}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 91, normalized size = 4.14 \begin {gather*} {\left (2 \, {\left (x + \frac {2 \, x}{x^{2} + 4} - 3 \, \arctan \left (\frac {1}{2} \, x\right )\right )} e^{4} + 2 \, {\left (\frac {2 \, x}{x^{2} + 4} + \arctan \left (\frac {1}{2} \, x\right )\right )} e^{4} - 4 \, {\left (\frac {2 \, x}{x^{2} + 4} - \arctan \left (\frac {1}{2} \, x\right )\right )} e^{4} - e^{\left (x e^{\left (-4\right )} - \frac {4 \, x}{x^{2} e^{4} + 4 \, e^{4}} + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 20, normalized size = 0.91 \begin {gather*} 2\,x-{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^{-4}}{x^2+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 15, normalized size = 0.68 \begin {gather*} 2 x - e^{\frac {x^{3}}{\left (x^{2} + 4\right ) e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________