Optimal. Leaf size=29 \[ -x+\frac {1}{3} x^3 (-x+4 (3+x))+\left (e^x+x+\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 45, normalized size of antiderivative = 1.55, number of steps used = 9, number of rules used = 6, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {14, 2194, 2288, 2346, 2301, 2295} \begin {gather*} x^4+4 x^3+x^2+\frac {2 e^x \left (x^2+x \log (x)\right )}{x}-x+e^{2 x}+\log ^2(x)+2 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2288
Rule 2295
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{2 x}+\frac {2 e^x \left (1+x+x^2+x \log (x)\right )}{x}+\frac {x+2 x^2+12 x^3+4 x^4+2 \log (x)+2 x \log (x)}{x}\right ) \, dx\\ &=2 \int e^{2 x} \, dx+2 \int \frac {e^x \left (1+x+x^2+x \log (x)\right )}{x} \, dx+\int \frac {x+2 x^2+12 x^3+4 x^4+2 \log (x)+2 x \log (x)}{x} \, dx\\ &=e^{2 x}+\frac {2 e^x \left (x^2+x \log (x)\right )}{x}+\int \left (1+2 x+12 x^2+4 x^3+\frac {2 (1+x) \log (x)}{x}\right ) \, dx\\ &=e^{2 x}+x+x^2+4 x^3+x^4+\frac {2 e^x \left (x^2+x \log (x)\right )}{x}+2 \int \frac {(1+x) \log (x)}{x} \, dx\\ &=e^{2 x}+x+x^2+4 x^3+x^4+\frac {2 e^x \left (x^2+x \log (x)\right )}{x}+2 \int \log (x) \, dx+2 \int \frac {\log (x)}{x} \, dx\\ &=e^{2 x}-x+x^2+4 x^3+x^4+2 x \log (x)+\log ^2(x)+\frac {2 e^x \left (x^2+x \log (x)\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 39, normalized size = 1.34 \begin {gather*} e^{2 x}-x+2 e^x x+x^2+4 x^3+x^4+2 \left (e^x+x\right ) \log (x)+\log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 36, normalized size = 1.24 \begin {gather*} x^{4} + 4 \, x^{3} + x^{2} + 2 \, x e^{x} + 2 \, {\left (x + e^{x}\right )} \log \relax (x) + \log \relax (x)^{2} - x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 39, normalized size = 1.34 \begin {gather*} x^{4} + 4 \, x^{3} + x^{2} + 2 \, x e^{x} + 2 \, x \log \relax (x) + 2 \, e^{x} \log \relax (x) + \log \relax (x)^{2} - x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 40, normalized size = 1.38
method | result | size |
default | \(-x +2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x} \ln \relax (x )+x^{2}+4 x^{3}+x^{4}+{\mathrm e}^{2 x}+2 x \ln \relax (x )+\ln \relax (x )^{2}\) | \(40\) |
risch | \(\ln \relax (x )^{2}+\left (2 \,{\mathrm e}^{x}+2 x \right ) \ln \relax (x )+x^{4}+4 x^{3}+x^{2}+2 \,{\mathrm e}^{x} x +{\mathrm e}^{2 x}-x\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 45, normalized size = 1.55 \begin {gather*} x^{4} + 4 \, x^{3} + x^{2} + 2 \, {\left (x - 1\right )} e^{x} + 2 \, x \log \relax (x) + 2 \, e^{x} \log \relax (x) + \log \relax (x)^{2} - x + e^{\left (2 \, x\right )} + 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 39, normalized size = 1.34 \begin {gather*} {\mathrm {e}}^{2\,x}-x+2\,{\mathrm {e}}^x\,\ln \relax (x)+{\ln \relax (x)}^2+2\,x\,{\mathrm {e}}^x+2\,x\,\ln \relax (x)+x^2+4\,x^3+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 41, normalized size = 1.41 \begin {gather*} x^{4} + 4 x^{3} + x^{2} + 2 x \log {\relax (x )} - x + \left (2 x + 2 \log {\relax (x )}\right ) e^{x} + e^{2 x} + \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________