Optimal. Leaf size=27 \[ 3^{4 x^2 (15+\log (x))} \left (\frac {1}{x}\right )^{-1+4 x^2 (15+\log (x))} \]
________________________________________________________________________________________
Rubi [B] time = 0.44, antiderivative size = 97, normalized size of antiderivative = 3.59, number of steps used = 1, number of rules used = 1, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {2288} \begin {gather*} \frac {3^{60 x^2} \left (\frac {1}{x}\right )^{60 x^2} e^{4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (15 x^2-31 x^2 \log \left (\frac {3}{x}\right )+\left (x^2-2 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right )}{15 x-31 x \log \left (\frac {3}{x}\right )-2 x \log \left (\frac {3}{x}\right ) \log (x)+x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {3^{60 x^2} e^{4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (\frac {1}{x}\right )^{60 x^2} \left (15 x^2-31 x^2 \log \left (\frac {3}{x}\right )+\left (x^2-2 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right )}{15 x-31 x \log \left (\frac {3}{x}\right )+x \log (x)-2 x \log \left (\frac {3}{x}\right ) \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.95, size = 0, normalized size = 0.00 \begin {gather*} \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.91, size = 37, normalized size = 1.37 \begin {gather*} x e^{\left (-4 \, x^{2} \log \left (\frac {3}{x}\right )^{2} + 4 \, {\left (x^{2} \log \relax (3) + 15 \, x^{2}\right )} \log \left (\frac {3}{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 36, normalized size = 1.33 \begin {gather*} x e^{\left (4 \, x^{2} \log \relax (3) \log \relax (x) - 4 \, x^{2} \log \relax (x)^{2} + 60 \, x^{2} \log \relax (3) - 60 \, x^{2} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.07
method | result | size |
default | \({\mathrm e}^{4 x^{2} \ln \left (\frac {3}{x}\right ) \ln \relax (x )+60 x^{2} \ln \left (\frac {3}{x}\right )} x\) | \(29\) |
risch | \(x \,x^{-4 x^{2} \left (\ln \relax (x )-\ln \relax (3)\right )} {\mathrm e}^{60 x^{2} \left (\ln \relax (3)-\ln \relax (x )\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 36, normalized size = 1.33 \begin {gather*} x e^{\left (4 \, x^{2} \log \relax (3) \log \relax (x) - 4 \, x^{2} \log \relax (x)^{2} + 60 \, x^{2} \log \relax (3) - 60 \, x^{2} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.02, size = 38, normalized size = 1.41 \begin {gather*} 3^{60\,x^2}\,x\,x^{4\,x^2\,\ln \left (\frac {1}{x}\right )}\,x^{4\,x^2\,\ln \relax (3)}\,{\left (\frac {1}{x}\right )}^{60\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 29, normalized size = 1.07 \begin {gather*} x e^{4 x^{2} \left (- \log {\relax (x )} + \log {\relax (3 )}\right ) \log {\relax (x )} + 60 x^{2} \left (- \log {\relax (x )} + \log {\relax (3 )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________