Optimal. Leaf size=32 \[ \frac {x \left (5+\frac {1}{4} e^{e^{-x} x}+x-\log \left (2 x^2\right )\right )}{x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 8.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-20-12 x+4 x^2\right )+e^x (12+8 x) \log (x)+e^{e^{-x} x} \left (-e^x+x^2-x^3+\left (e^x+x-x^2\right ) \log (x)\right )+\left (4 e^x-4 e^x \log (x)\right ) \log \left (2 x^2\right )}{4 e^x x^2+8 e^x x \log (x)+4 e^x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (e^x \left (-20-12 x+4 x^2\right )+e^x (12+8 x) \log (x)+e^{e^{-x} x} \left (-e^x+x^2-x^3+\left (e^x+x-x^2\right ) \log (x)\right )+\left (4 e^x-4 e^x \log (x)\right ) \log \left (2 x^2\right )\right )}{4 (x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{-x} \left (e^x \left (-20-12 x+4 x^2\right )+e^x (12+8 x) \log (x)+e^{e^{-x} x} \left (-e^x+x^2-x^3+\left (e^x+x-x^2\right ) \log (x)\right )+\left (4 e^x-4 e^x \log (x)\right ) \log \left (2 x^2\right )\right )}{(x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^{-x+e^{-x} x} \left (e^x-x^2+x^3-e^x \log (x)-x \log (x)+x^2 \log (x)\right )}{(x+\log (x))^2}+\frac {4 \left (-5-3 x+x^2+3 \log (x)+2 x \log (x)+\log \left (2 x^2\right )-\log (x) \log \left (2 x^2\right )\right )}{(x+\log (x))^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{-x+e^{-x} x} \left (e^x-x^2+x^3-e^x \log (x)-x \log (x)+x^2 \log (x)\right )}{(x+\log (x))^2} \, dx\right )+\int \frac {-5-3 x+x^2+3 \log (x)+2 x \log (x)+\log \left (2 x^2\right )-\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} \left (e^x-x^2+x^3-e^x \log (x)-x \log (x)+x^2 \log (x)\right )}{(x+\log (x))^2} \, dx\right )+\int \left (-\frac {5}{(x+\log (x))^2}-\frac {3 x}{(x+\log (x))^2}+\frac {x^2}{(x+\log (x))^2}+\frac {3 \log (x)}{(x+\log (x))^2}+\frac {2 x \log (x)}{(x+\log (x))^2}-\frac {(-1+\log (x)) \log \left (2 x^2\right )}{(x+\log (x))^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \left (-\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{(x+\log (x))^2}+\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^3}{(x+\log (x))^2}-\frac {e^{x-e^{-x} \left (-1+e^x\right ) x} (-1+\log (x))}{(x+\log (x))^2}-\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x \log (x)}{(x+\log (x))^2}+\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2 \log (x)}{(x+\log (x))^2}\right ) \, dx\right )+2 \int \frac {x \log (x)}{(x+\log (x))^2} \, dx-3 \int \frac {x}{(x+\log (x))^2} \, dx+3 \int \frac {\log (x)}{(x+\log (x))^2} \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx-\int \frac {(-1+\log (x)) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{(x+\log (x))^2} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^3}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{x-e^{-x} \left (-1+e^x\right ) x} (-1+\log (x))}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x \log (x)}{(x+\log (x))^2} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2 \log (x)}{(x+\log (x))^2} \, dx+2 \int \left (-\frac {x^2}{(x+\log (x))^2}+\frac {x}{x+\log (x)}\right ) \, dx-3 \int \frac {x}{(x+\log (x))^2} \, dx+3 \int \left (-\frac {x}{(x+\log (x))^2}+\frac {1}{x+\log (x)}\right ) \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx-\int \left (-\frac {\log \left (2 x^2\right )}{(x+\log (x))^2}+\frac {\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{(x+\log (x))^2} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^3}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{e^{-x} x} (-1+\log (x))}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \left (-\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{(x+\log (x))^2}+\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x}{x+\log (x)}\right ) \, dx-\frac {1}{4} \int \left (-\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^3}{(x+\log (x))^2}+\frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{x+\log (x)}\right ) \, dx-2 \int \frac {x^2}{(x+\log (x))^2} \, dx+2 \int \frac {x}{x+\log (x)} \, dx-2 \left (3 \int \frac {x}{(x+\log (x))^2} \, dx\right )+3 \int \frac {1}{x+\log (x)} \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx+\int \frac {\log \left (2 x^2\right )}{(x+\log (x))^2} \, dx-\int \frac {\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x}{x+\log (x)} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{x+\log (x)} \, dx+\frac {1}{4} \int \left (\frac {e^{e^{-x} x} (-1-x)}{(x+\log (x))^2}+\frac {e^{e^{-x} x}}{x+\log (x)}\right ) \, dx-2 \int \frac {x^2}{(x+\log (x))^2} \, dx+2 \int \frac {x}{x+\log (x)} \, dx-2 \left (3 \int \frac {x}{(x+\log (x))^2} \, dx\right )+3 \int \frac {1}{x+\log (x)} \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx+\int \frac {\log \left (2 x^2\right )}{(x+\log (x))^2} \, dx-\int \frac {\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{e^{-x} x} (-1-x)}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{e^{-x} x}}{x+\log (x)} \, dx+\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x}{x+\log (x)} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{x+\log (x)} \, dx-2 \int \frac {x^2}{(x+\log (x))^2} \, dx+2 \int \frac {x}{x+\log (x)} \, dx-2 \left (3 \int \frac {x}{(x+\log (x))^2} \, dx\right )+3 \int \frac {1}{x+\log (x)} \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx+\int \frac {\log \left (2 x^2\right )}{(x+\log (x))^2} \, dx-\int \frac {\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{e^{-x} x}}{x+\log (x)} \, dx+\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x}{x+\log (x)} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{x+\log (x)} \, dx+\frac {1}{4} \int \left (-\frac {e^{e^{-x} x}}{(x+\log (x))^2}-\frac {e^{e^{-x} x} x}{(x+\log (x))^2}\right ) \, dx-2 \int \frac {x^2}{(x+\log (x))^2} \, dx+2 \int \frac {x}{x+\log (x)} \, dx-2 \left (3 \int \frac {x}{(x+\log (x))^2} \, dx\right )+3 \int \frac {1}{x+\log (x)} \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx+\int \frac {\log \left (2 x^2\right )}{(x+\log (x))^2} \, dx-\int \frac {\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{e^{-x} x}}{(x+\log (x))^2} \, dx\right )-\frac {1}{4} \int \frac {e^{e^{-x} x} x}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{e^{-x} x}}{x+\log (x)} \, dx+\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x}{x+\log (x)} \, dx-\frac {1}{4} \int \frac {e^{-e^{-x} \left (-1+e^x\right ) x} x^2}{x+\log (x)} \, dx-2 \int \frac {x^2}{(x+\log (x))^2} \, dx+2 \int \frac {x}{x+\log (x)} \, dx-2 \left (3 \int \frac {x}{(x+\log (x))^2} \, dx\right )+3 \int \frac {1}{x+\log (x)} \, dx-5 \int \frac {1}{(x+\log (x))^2} \, dx+\int \frac {x^2}{(x+\log (x))^2} \, dx+\int \frac {\log \left (2 x^2\right )}{(x+\log (x))^2} \, dx-\int \frac {\log (x) \log \left (2 x^2\right )}{(x+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 34, normalized size = 1.06 \begin {gather*} \frac {x \left (e^{e^{-x} x}+4 (5+x)-4 \log \left (2 x^2\right )\right )}{4 (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 36, normalized size = 1.12 \begin {gather*} \frac {4 \, x^{2} + x e^{\left (x e^{\left (-x\right )}\right )} - 4 \, x \log \relax (2) - 8 \, x \log \relax (x) + 20 \, x}{4 \, {\left (x + \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (2 \, x + 3\right )} e^{x} \log \relax (x) - {\left (x^{3} - x^{2} + {\left (x^{2} - x - e^{x}\right )} \log \relax (x) + e^{x}\right )} e^{\left (x e^{\left (-x\right )}\right )} + 4 \, {\left (x^{2} - 3 \, x - 5\right )} e^{x} - 4 \, {\left (e^{x} \log \relax (x) - e^{x}\right )} \log \left (2 \, x^{2}\right )}{4 \, {\left (x^{2} e^{x} + 2 \, x e^{x} \log \relax (x) + e^{x} \log \relax (x)^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 88, normalized size = 2.75
method | result | size |
risch | \(-2 x +\frac {\left (i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+10+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 \ln \relax (2)+6 x \right ) x}{2 x +2 \ln \relax (x )}+\frac {x \,{\mathrm e}^{x \,{\mathrm e}^{-x}}}{4 x +4 \ln \relax (x )}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {x^{2} - x {\left (\log \relax (2) - 5\right )} - 2 \, x \log \relax (x)}{x + \log \relax (x)} + \frac {1}{4} \, \int -\frac {{\left (x^{3} - x^{2} - {\left (\log \relax (x) - 1\right )} e^{x} + {\left (x^{2} - x\right )} \log \relax (x)\right )} e^{\left (x e^{\left (-x\right )} - x\right )}}{x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.98, size = 105, normalized size = 3.28 \begin {gather*} 4\,x+\frac {\frac {x\,\left (3\,x-\ln \left (2\,x^2\right )+2\,\ln \relax (x)-3\,x^2+5\right )}{x+1}-\frac {x\,\ln \relax (x)\,\left (6\,x-\ln \left (2\,x^2\right )+2\,\ln \relax (x)+5\right )}{x+1}}{x+\ln \relax (x)}+\frac {\ln \left (2\,x^2\right )-2\,\ln \relax (x)+1}{x+1}+\frac {x\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-x}}}{4\,\left (x+\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 37, normalized size = 1.16 \begin {gather*} - 2 x + \frac {x e^{x e^{- x}}}{4 x + 4 \log {\relax (x )}} + \frac {3 x^{2} - x \log {\relax (2 )} + 5 x}{x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________