Optimal. Leaf size=28 \[ \left (3+x^2\right ) \left (x-\frac {2 x}{\frac {x}{25}+\frac {1}{5} (-1+x) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-750+750 x-247 x^2+150 x^3+3 x^4+\left (750-30 x+780 x^2-530 x^3+30 x^4\right ) \log (x)+\left (75-150 x+150 x^2-150 x^3+75 x^4\right ) \log ^2(x)}{x^2+\left (-10 x+10 x^2\right ) \log (x)+\left (25-50 x+25 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-750+750 x-247 x^2+150 x^3+3 x^4+10 \left (75-3 x+78 x^2-53 x^3+3 x^4\right ) \log (x)+75 (-1+x)^2 \left (1+x^2\right ) \log ^2(x)}{(x+5 (-1+x) \log (x))^2} \, dx\\ &=\int \left (3 \left (1+x^2\right )+\frac {50 \left (15-33 x+20 x^2-11 x^3+5 x^4\right )}{(-1+x) (x-5 \log (x)+5 x \log (x))^2}-\frac {50 \left (-3-3 x^2+2 x^3\right )}{(-1+x) (x-5 \log (x)+5 x \log (x))}\right ) \, dx\\ &=3 \int \left (1+x^2\right ) \, dx+50 \int \frac {15-33 x+20 x^2-11 x^3+5 x^4}{(-1+x) (x-5 \log (x)+5 x \log (x))^2} \, dx-50 \int \frac {-3-3 x^2+2 x^3}{(-1+x) (x-5 \log (x)+5 x \log (x))} \, dx\\ &=3 x+x^3+50 \int \left (-\frac {19}{(x-5 \log (x)+5 x \log (x))^2}-\frac {4}{(-1+x) (x-5 \log (x)+5 x \log (x))^2}+\frac {14 x}{(x-5 \log (x)+5 x \log (x))^2}-\frac {6 x^2}{(x-5 \log (x)+5 x \log (x))^2}+\frac {5 x^3}{(x-5 \log (x)+5 x \log (x))^2}\right ) \, dx-50 \int \left (-\frac {1}{x-5 \log (x)+5 x \log (x)}-\frac {4}{(-1+x) (x-5 \log (x)+5 x \log (x))}-\frac {x}{x-5 \log (x)+5 x \log (x)}+\frac {2 x^2}{x-5 \log (x)+5 x \log (x)}\right ) \, dx\\ &=3 x+x^3+50 \int \frac {1}{x-5 \log (x)+5 x \log (x)} \, dx+50 \int \frac {x}{x-5 \log (x)+5 x \log (x)} \, dx-100 \int \frac {x^2}{x-5 \log (x)+5 x \log (x)} \, dx-200 \int \frac {1}{(-1+x) (x-5 \log (x)+5 x \log (x))^2} \, dx+200 \int \frac {1}{(-1+x) (x-5 \log (x)+5 x \log (x))} \, dx+250 \int \frac {x^3}{(x-5 \log (x)+5 x \log (x))^2} \, dx-300 \int \frac {x^2}{(x-5 \log (x)+5 x \log (x))^2} \, dx+700 \int \frac {x}{(x-5 \log (x)+5 x \log (x))^2} \, dx-950 \int \frac {1}{(x-5 \log (x)+5 x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 25, normalized size = 0.89 \begin {gather*} x \left (3+x^2-\frac {50 \left (3+x^2\right )}{x+5 (-1+x) \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.86, size = 50, normalized size = 1.79 \begin {gather*} \frac {x^{4} - 50 \, x^{3} + 3 \, x^{2} + 5 \, {\left (x^{4} - x^{3} + 3 \, x^{2} - 3 \, x\right )} \log \relax (x) - 150 \, x}{5 \, {\left (x - 1\right )} \log \relax (x) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 29, normalized size = 1.04 \begin {gather*} x^{3} + 3 \, x - \frac {50 \, {\left (x^{3} + 3 \, x\right )}}{5 \, x \log \relax (x) + x - 5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.04
method | result | size |
risch | \(x^{3}+3 x -\frac {50 \left (x^{2}+3\right ) x}{5 x \ln \relax (x )-5 \ln \relax (x )+x}\) | \(29\) |
norman | \(\frac {x^{4}-750 \ln \relax (x )+735 x \ln \relax (x )+3 x^{2}-50 x^{3}+15 x^{2} \ln \relax (x )-5 x^{3} \ln \relax (x )+5 x^{4} \ln \relax (x )}{5 x \ln \relax (x )-5 \ln \relax (x )+x}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 50, normalized size = 1.79 \begin {gather*} \frac {x^{4} - 50 \, x^{3} + 3 \, x^{2} + 5 \, {\left (x^{4} - x^{3} + 3 \, x^{2} - 3 \, x\right )} \log \relax (x) - 150 \, x}{5 \, {\left (x - 1\right )} \log \relax (x) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.77, size = 44, normalized size = 1.57 \begin {gather*} x\,\left (x^2+3\right )-\frac {x^2\,\left (x^2+3\right )-x\,\left (x^2+3\right )\,\left (x-50\right )}{x-5\,\ln \relax (x)+5\,x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.93 \begin {gather*} x^{3} + 3 x + \frac {- 50 x^{3} - 150 x}{x + \left (5 x - 5\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________