Optimal. Leaf size=20 \[ -1-59049 e^{-e^{-3+4 x}+2 x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2282, 2226, 2205, 2212} \begin {gather*} x-59049 e^{2 x-e^{4 x-3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2212
Rule 2226
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+59049 \int e^{-e^{-3+4 x}+2 x} \left (-2+4 e^{-3+4 x}\right ) \, dx\\ &=x+\frac {59049}{2} \operatorname {Subst}\left (\int e^{-\frac {x^2}{e^3}} \left (-2+\frac {4 x^2}{e^3}\right ) \, dx,x,e^{2 x}\right )\\ &=x+\frac {59049}{2} \operatorname {Subst}\left (\int \left (-2 e^{-\frac {x^2}{e^3}}+4 e^{-3-\frac {x^2}{e^3}} x^2\right ) \, dx,x,e^{2 x}\right )\\ &=x-59049 \operatorname {Subst}\left (\int e^{-\frac {x^2}{e^3}} \, dx,x,e^{2 x}\right )+118098 \operatorname {Subst}\left (\int e^{-3-\frac {x^2}{e^3}} x^2 \, dx,x,e^{2 x}\right )\\ &=-59049 e^{-e^{-3+4 x}+2 x}+x-\frac {59049}{2} e^{3/2} \sqrt {\pi } \text {erf}\left (e^{-\frac {3}{2}+2 x}\right )+\left (59049 e^3\right ) \operatorname {Subst}\left (\int e^{-3-\frac {x^2}{e^3}} \, dx,x,e^{2 x}\right )\\ &=-59049 e^{-e^{-3+4 x}+2 x}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 0.95 \begin {gather*} -59049 e^{-e^{-3+4 x}+2 x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 21, normalized size = 1.05 \begin {gather*} x - e^{\left (2 \, x - e^{\left (4 \, x - 3\right )} + 10 \, \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.05 \begin {gather*} x - e^{\left (2 \, x - e^{\left (4 \, x - 3\right )} + 10 \, \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 0.90
method | result | size |
risch | \(x -59049 \,{\mathrm e}^{-{\mathrm e}^{4 x -3}+2 x}\) | \(18\) |
default | \(x -{\mathrm e}^{-{\mathrm e}^{4 x -3}+10 \ln \relax (3)+2 x}\) | \(22\) |
norman | \(x -{\mathrm e}^{-{\mathrm e}^{4 x -3}+10 \ln \relax (3)+2 x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 17, normalized size = 0.85 \begin {gather*} x - 59049 \, e^{\left (2 \, x - e^{\left (4 \, x - 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 17, normalized size = 0.85 \begin {gather*} x-59049\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{-3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.70 \begin {gather*} x - 59049 e^{2 x - e^{4 x - 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________