Optimal. Leaf size=24 \[ e^{e^3 \left (5-\frac {3 \left (\log (3)+\log \left (3 x^2\right )\right )}{-1+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^3 (-5+5 x)-3 e^3 \log (3)-3 e^3 \log \left (3 x^2\right )}{-1+x}\right ) \left (e^3 (6-6 x)+3 e^3 x \log (3)+3 e^3 x \log \left (3 x^2\right )\right )}{x-2 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^3 (-5+5 x)-3 e^3 \log (3)-3 e^3 \log \left (3 x^2\right )}{-1+x}\right ) \left (e^3 (6-6 x)+3 e^3 x \log (3)+3 e^3 x \log \left (3 x^2\right )\right )}{x \left (1-2 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {e^3 (-5+5 x)-3 e^3 \log (3)-3 e^3 \log \left (3 x^2\right )}{-1+x}\right ) \left (e^3 (6-6 x)+3 e^3 x \log (3)+3 e^3 x \log \left (3 x^2\right )\right )}{(-1+x)^2 x} \, dx\\ &=\int \frac {3 \exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \left (2-2 x (1-\log (3))+x \log \left (x^2\right )\right )}{(1-x)^2 x} \, dx\\ &=3 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \left (2-2 x (1-\log (3))+x \log \left (x^2\right )\right )}{(1-x)^2 x} \, dx\\ &=3 \int \left (\frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) (2-x (2-\log (9)))}{(1-x)^2 x}+\frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \log \left (x^2\right )}{(-1+x)^2}\right ) \, dx\\ &=3 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) (2-x (2-\log (9)))}{(1-x)^2 x} \, dx+3 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \log \left (x^2\right )}{(-1+x)^2} \, dx\\ &=3 \int \left (-\frac {2 \exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right )}{-1+x}+\frac {2 \exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right )}{x}+\frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \log (9)}{(-1+x)^2}\right ) \, dx+3 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \log \left (x^2\right )}{(-1+x)^2} \, dx\\ &=3 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right ) \log \left (x^2\right )}{(-1+x)^2} \, dx-6 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right )}{-1+x} \, dx+6 \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right )}{x} \, dx+(3 \log (9)) \int \frac {\exp \left (3+\frac {e^3 \left (5 x-5 \left (1+\frac {2 \log (27)}{5}\right )-3 \log \left (x^2\right )\right )}{-1+x}\right )}{(-1+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.79, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {e^3 (-5+5 x)-3 e^3 \log (3)-3 e^3 \log \left (3 x^2\right )}{-1+x}} \left (e^3 (6-6 x)+3 e^3 x \log (3)+3 e^3 x \log \left (3 x^2\right )\right )}{x-2 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 31, normalized size = 1.29 \begin {gather*} e^{\left (\frac {5 \, {\left (x - 1\right )} e^{3} - 3 \, e^{3} \log \relax (3) - 3 \, e^{3} \log \left (3 \, x^{2}\right )}{x - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 47, normalized size = 1.96 \begin {gather*} e^{\left (\frac {5 \, x e^{3}}{x - 1} - \frac {3 \, e^{3} \log \relax (3)}{x - 1} - \frac {3 \, e^{3} \log \left (3 \, x^{2}\right )}{x - 1} - \frac {5 \, e^{3}}{x - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 28, normalized size = 1.17
method | result | size |
risch | \({\mathrm e}^{-\frac {{\mathrm e}^{3} \left (3 \ln \left (3 x^{2}\right )+3 \ln \relax (3)-5 x +5\right )}{x -1}}\) | \(28\) |
default | \(\frac {x \,{\mathrm e}^{\frac {-3 \,{\mathrm e}^{3} \ln \left (3 x^{2}\right )-3 \,{\mathrm e}^{3} \ln \relax (3)+\left (5 x -5\right ) {\mathrm e}^{3}}{x -1}}-{\mathrm e}^{\frac {-3 \,{\mathrm e}^{3} \ln \left (3 x^{2}\right )-3 \,{\mathrm e}^{3} \ln \relax (3)+\left (5 x -5\right ) {\mathrm e}^{3}}{x -1}}}{x -1}\) | \(76\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {-3 \,{\mathrm e}^{3} \ln \left (3 x^{2}\right )-3 \,{\mathrm e}^{3} \ln \relax (3)+\left (5 x -5\right ) {\mathrm e}^{3}}{x -1}}-{\mathrm e}^{\frac {-3 \,{\mathrm e}^{3} \ln \left (3 x^{2}\right )-3 \,{\mathrm e}^{3} \ln \relax (3)+\left (5 x -5\right ) {\mathrm e}^{3}}{x -1}}}{x -1}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 28, normalized size = 1.17 \begin {gather*} e^{\left (-\frac {6 \, e^{3} \log \relax (3)}{x - 1} - \frac {6 \, e^{3} \log \relax (x)}{x - 1} + 5 \, e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.09, size = 36, normalized size = 1.50 \begin {gather*} {\mathrm {e}}^{-\frac {5\,{\mathrm {e}}^3}{x-1}}\,{\mathrm {e}}^{\frac {5\,x\,{\mathrm {e}}^3}{x-1}}\,{\left (\frac {1}{729\,x^6}\right )}^{\frac {{\mathrm {e}}^3}{x-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 32, normalized size = 1.33 \begin {gather*} e^{\frac {\left (5 x - 5\right ) e^{3} - 3 e^{3} \log {\left (3 x^{2} \right )} - 3 e^{3} \log {\relax (3 )}}{x - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________