Optimal. Leaf size=31 \[ \frac {2 \left (-e^5+\left (-3+e^{e^{-x} x}-\frac {x}{25}\right )^2 x\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^{2 e^{-x} x} \left (2500 x^2-2500 x^3\right )+e^x \left (1250 e^5+300 x^2+4 x^3\right )+e^{e^{-x} x} \left (-7500 x^2-100 e^x x^2+7400 x^3+100 x^4\right )\right )}{625 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{625} \int \frac {e^{-x} \left (e^{2 e^{-x} x} \left (2500 x^2-2500 x^3\right )+e^x \left (1250 e^5+300 x^2+4 x^3\right )+e^{e^{-x} x} \left (-7500 x^2-100 e^x x^2+7400 x^3+100 x^4\right )\right )}{x^2} \, dx\\ &=\frac {1}{625} \int \left (-2500 e^{-x+2 e^{-x} x} (-1+x)-100 e^{-x+e^{-x} x} \left (75+e^x-74 x-x^2\right )+\frac {2 \left (625 e^5+150 x^2+2 x^3\right )}{x^2}\right ) \, dx\\ &=\frac {2}{625} \int \frac {625 e^5+150 x^2+2 x^3}{x^2} \, dx-\frac {4}{25} \int e^{-x+e^{-x} x} \left (75+e^x-74 x-x^2\right ) \, dx-4 \int e^{-x+2 e^{-x} x} (-1+x) \, dx\\ &=\frac {2}{625} \int \left (150+\frac {625 e^5}{x^2}+2 x\right ) \, dx-\frac {4}{25} \int e^{-e^{-x} \left (-1+e^x\right ) x} \left (75+e^x-74 x-x^2\right ) \, dx-4 \int e^{-e^{-x} \left (-2+e^x\right ) x} (-1+x) \, dx\\ &=-\frac {2 e^5}{x}+\frac {12 x}{25}+\frac {2 x^2}{625}-\frac {4}{25} \int \left (75 e^{-e^{-x} \left (-1+e^x\right ) x}+e^{x-e^{-x} \left (-1+e^x\right ) x}-74 e^{-e^{-x} \left (-1+e^x\right ) x} x-e^{-e^{-x} \left (-1+e^x\right ) x} x^2\right ) \, dx-4 \int \left (-e^{-e^{-x} \left (-2+e^x\right ) x}+e^{-e^{-x} \left (-2+e^x\right ) x} x\right ) \, dx\\ &=-\frac {2 e^5}{x}+\frac {12 x}{25}+\frac {2 x^2}{625}-\frac {4}{25} \int e^{x-e^{-x} \left (-1+e^x\right ) x} \, dx+\frac {4}{25} \int e^{-e^{-x} \left (-1+e^x\right ) x} x^2 \, dx+4 \int e^{-e^{-x} \left (-2+e^x\right ) x} \, dx-4 \int e^{-e^{-x} \left (-2+e^x\right ) x} x \, dx+\frac {296}{25} \int e^{-e^{-x} \left (-1+e^x\right ) x} x \, dx-12 \int e^{-e^{-x} \left (-1+e^x\right ) x} \, dx\\ &=-\frac {2 e^5}{x}+\frac {12 x}{25}+\frac {2 x^2}{625}-\frac {4}{25} \int e^{e^{-x} x} \, dx+\frac {4}{25} \int e^{-e^{-x} \left (-1+e^x\right ) x} x^2 \, dx+4 \int e^{-e^{-x} \left (-2+e^x\right ) x} \, dx-4 \int e^{-e^{-x} \left (-2+e^x\right ) x} x \, dx+\frac {296}{25} \int e^{-e^{-x} \left (-1+e^x\right ) x} x \, dx-12 \int e^{-e^{-x} \left (-1+e^x\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 45, normalized size = 1.45 \begin {gather*} 2 e^{2 e^{-x} x}-\frac {2 e^5}{x}-\frac {4}{25} e^{e^{-x} x} (75+x)+\frac {2}{625} x (150+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 45, normalized size = 1.45 \begin {gather*} \frac {2 \, {\left (x^{3} + 150 \, x^{2} + 625 \, x e^{\left (2 \, x e^{\left (-x\right )}\right )} - 50 \, {\left (x^{2} + 75 \, x\right )} e^{\left (x e^{\left (-x\right )}\right )} - 625 \, e^{5}\right )}}{625 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (1250 \, {\left (x^{3} - x^{2}\right )} e^{\left (2 \, x e^{\left (-x\right )}\right )} - 50 \, {\left (x^{4} + 74 \, x^{3} - x^{2} e^{x} - 75 \, x^{2}\right )} e^{\left (x e^{\left (-x\right )}\right )} - {\left (2 \, x^{3} + 150 \, x^{2} + 625 \, e^{5}\right )} e^{x}\right )} e^{\left (-x\right )}}{625 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 41, normalized size = 1.32
method | result | size |
risch | \(\frac {2 x^{2}}{625}+\frac {12 x}{25}-\frac {2 \,{\mathrm e}^{5}}{x}+2 \,{\mathrm e}^{2 x \,{\mathrm e}^{-x}}+\frac {\left (-100 x -7500\right ) {\mathrm e}^{x \,{\mathrm e}^{-x}}}{625}\) | \(41\) |
norman | \(\frac {\left (-2 \,{\mathrm e}^{5} {\mathrm e}^{x}+\frac {12 \,{\mathrm e}^{x} x^{2}}{25}+\frac {2 \,{\mathrm e}^{x} x^{3}}{625}-12 \,{\mathrm e}^{x} x \,{\mathrm e}^{x \,{\mathrm e}^{-x}}+2 \,{\mathrm e}^{x} x \,{\mathrm e}^{2 x \,{\mathrm e}^{-x}}-\frac {4 \,{\mathrm e}^{x} {\mathrm e}^{x \,{\mathrm e}^{-x}} x^{2}}{25}\right ) {\mathrm e}^{-x}}{x}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2}{625} \, x^{2} + \frac {12}{25} \, x - \frac {2 \, e^{5}}{x} + 2 \, e^{\left (2 \, x e^{\left (-x\right )}\right )} - \frac {2}{625} \, \int -50 \, {\left (x^{2} + 74 \, x - e^{x} - 75\right )} e^{\left (x e^{\left (-x\right )} - x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.80, size = 41, normalized size = 1.32 \begin {gather*} 2\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-x}}+\frac {2\,\left (x^3+150\,x^2-625\,{\mathrm {e}}^5\right )}{625\,x}-\frac {4\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-x}}\,\left (x+75\right )}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 42, normalized size = 1.35 \begin {gather*} \frac {2 x^{2}}{625} + \frac {12 x}{25} + \frac {\left (- 4 x - 300\right ) e^{x e^{- x}}}{25} + 2 e^{2 x e^{- x}} - \frac {2 e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________