Optimal. Leaf size=31 \[ -3+e^{\frac {6+e+5 x}{\frac {x}{3}+\log ^2\left (\frac {8}{4-x}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 9.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \left (72+e (12-3 x)-18 x+(108+18 e+90 x) \log \left (-\frac {8}{-4+x}\right )+(-180+45 x) \log ^2\left (-\frac {8}{-4+x}\right )\right )}{-4 x^2+x^3+\left (-24 x+6 x^2\right ) \log ^2\left (-\frac {8}{-4+x}\right )+(-36+9 x) \log ^4\left (-\frac {8}{-4+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \left (-72-e (12-3 x)+18 x-(108+18 e+90 x) \log \left (-\frac {8}{-4+x}\right )-(-180+45 x) \log ^2\left (-\frac {8}{-4+x}\right )\right )}{(4-x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\\ &=\int \left (-\frac {3 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} (6+e+5 x) \left (-4+x-6 \log \left (-\frac {8}{-4+x}\right )\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}+\frac {15 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}\right ) \, dx\\ &=-\left (3 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} (6+e+5 x) \left (-4+x-6 \log \left (-\frac {8}{-4+x}\right )\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\right )+15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx\\ &=-\left (3 \int \left (\frac {5 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \left (-4+x-6 \log \left (-\frac {8}{-4+x}\right )\right )}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}+\frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} (26+e) \left (-4+x-6 \log \left (-\frac {8}{-4+x}\right )\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}\right ) \, dx\right )+15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx\\ &=-\left (15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \left (-4+x-6 \log \left (-\frac {8}{-4+x}\right )\right )}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\right )+15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx-(3 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \left (-4+x-6 \log \left (-\frac {8}{-4+x}\right )\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\\ &=15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx-15 \int \left (-\frac {4 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}+\frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} x}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}-\frac {6 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}\right ) \, dx-(3 (26+e)) \int \left (-\frac {4 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}+\frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} x}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}-\frac {6 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}\right ) \, dx\\ &=-\left (15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} x}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\right )+15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx+60 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+90 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx-(3 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} x}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+(12 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+(18 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\\ &=-\left (15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} x}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\right )+15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx+60 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+90 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx-(3 (26+e)) \int \left (\frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}+\frac {4 e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2}\right ) \, dx+(12 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+(18 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\\ &=-\left (15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} x}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\right )+15 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )} \, dx+60 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+90 \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx-(3 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}}}{\left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx+(18 (26+e)) \int \frac {e^{\frac {18+3 e+15 x}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \log \left (-\frac {8}{-4+x}\right )}{(-4+x) \left (x+3 \log ^2\left (-\frac {8}{-4+x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 0.90 \begin {gather*} e^{\frac {3 (26+e+5 (-4+x))}{x+3 \log ^2\left (-\frac {8}{-4+x}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 26, normalized size = 0.84 \begin {gather*} e^{\left (\frac {3 \, {\left (5 \, x + e + 6\right )}}{3 \, \log \left (-\frac {8}{x - 4}\right )^{2} + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.45, size = 59, normalized size = 1.90 \begin {gather*} e^{\left (\frac {15 \, x}{3 \, \log \left (-\frac {8}{x - 4}\right )^{2} + x} + \frac {3 \, e}{3 \, \log \left (-\frac {8}{x - 4}\right )^{2} + x} + \frac {18}{3 \, \log \left (-\frac {8}{x - 4}\right )^{2} + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 27, normalized size = 0.87
method | result | size |
risch | \({\mathrm e}^{\frac {3 \,{\mathrm e}+15 x +18}{3 \ln \left (-\frac {8}{x -4}\right )^{2}+x}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 185, normalized size = 5.97 \begin {gather*} e^{\left (-\frac {405 \, \log \relax (2)^{2}}{27 \, \log \relax (2)^{2} - 18 \, \log \relax (2) \log \left (-x + 4\right ) + 3 \, \log \left (-x + 4\right )^{2} + x} + \frac {270 \, \log \relax (2) \log \left (-x + 4\right )}{27 \, \log \relax (2)^{2} - 18 \, \log \relax (2) \log \left (-x + 4\right ) + 3 \, \log \left (-x + 4\right )^{2} + x} - \frac {45 \, \log \left (-x + 4\right )^{2}}{27 \, \log \relax (2)^{2} - 18 \, \log \relax (2) \log \left (-x + 4\right ) + 3 \, \log \left (-x + 4\right )^{2} + x} + \frac {3 \, e}{27 \, \log \relax (2)^{2} - 18 \, \log \relax (2) \log \left (-x + 4\right ) + 3 \, \log \left (-x + 4\right )^{2} + x} + \frac {18}{27 \, \log \relax (2)^{2} - 18 \, \log \relax (2) \log \left (-x + 4\right ) + 3 \, \log \left (-x + 4\right )^{2} + x} + 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.45, size = 61, normalized size = 1.97 \begin {gather*} {\mathrm {e}}^{\frac {3\,\mathrm {e}}{3\,{\ln \left (-\frac {8}{x-4}\right )}^2+x}}\,{\mathrm {e}}^{\frac {15\,x}{3\,{\ln \left (-\frac {8}{x-4}\right )}^2+x}}\,{\mathrm {e}}^{\frac {18}{3\,{\ln \left (-\frac {8}{x-4}\right )}^2+x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.02, size = 24, normalized size = 0.77 \begin {gather*} e^{\frac {15 x + 3 e + 18}{x + 3 \log {\left (- \frac {8}{x - 4} \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________