Optimal. Leaf size=25 \[ \frac {1}{4} \left (e^{3+e^4+2 e^{2/x} x}+3 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x+e^{3+e^4+\frac {2}{x}+2 e^{2/x} x} (-4+2 x)}{4 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {3 x+e^{3+e^4+\frac {2}{x}+2 e^{2/x} x} (-4+2 x)}{x} \, dx\\ &=\frac {1}{4} \int \left (3+\frac {2 e^{3 \left (1+\frac {e^4}{3}\right )+\frac {2}{x}+2 e^{2/x} x} (-2+x)}{x}\right ) \, dx\\ &=\frac {3 x}{4}+\frac {1}{2} \int \frac {e^{3 \left (1+\frac {e^4}{3}\right )+\frac {2}{x}+2 e^{2/x} x} (-2+x)}{x} \, dx\\ &=\frac {3 x}{4}+\frac {1}{2} \int \left (e^{3 \left (1+\frac {e^4}{3}\right )+\frac {2}{x}+2 e^{2/x} x}-\frac {2 e^{3 \left (1+\frac {e^4}{3}\right )+\frac {2}{x}+2 e^{2/x} x}}{x}\right ) \, dx\\ &=\frac {3 x}{4}+\frac {1}{2} \int e^{3 \left (1+\frac {e^4}{3}\right )+\frac {2}{x}+2 e^{2/x} x} \, dx-\int \frac {e^{3 \left (1+\frac {e^4}{3}\right )+\frac {2}{x}+2 e^{2/x} x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 27, normalized size = 1.08 \begin {gather*} \frac {1}{4} e^{3+e^4+2 e^{2/x} x}+\frac {3 x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 43, normalized size = 1.72 \begin {gather*} \frac {1}{4} \, {\left (3 \, x e^{\frac {2}{x}} + e^{\left (\frac {2 \, x^{2} e^{\frac {2}{x}} + x e^{4} + 3 \, x + 2}{x}\right )}\right )} e^{\left (-\frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 43, normalized size = 1.72 \begin {gather*} \frac {1}{4} \, {\left (3 \, x e^{\frac {2}{x}} + e^{\left (\frac {2 \, x^{2} e^{\frac {2}{x}} + x e^{4} + 3 \, x + 2}{x}\right )}\right )} e^{\left (-\frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 21, normalized size = 0.84
method | result | size |
norman | \(\frac {{\mathrm e}^{2 x \,{\mathrm e}^{\frac {2}{x}}+{\mathrm e}^{4}+3}}{4}+\frac {3 x}{4}\) | \(21\) |
risch | \(\frac {{\mathrm e}^{2 x \,{\mathrm e}^{\frac {2}{x}}+{\mathrm e}^{4}+3}}{4}+\frac {3 x}{4}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 20, normalized size = 0.80 \begin {gather*} \frac {3}{4} \, x + \frac {1}{4} \, e^{\left (2 \, x e^{\frac {2}{x}} + e^{4} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.75, size = 21, normalized size = 0.84 \begin {gather*} \frac {3\,x}{4}+\frac {{\mathrm {e}}^3\,{\mathrm {e}}^{{\mathrm {e}}^4}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{2/x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 20, normalized size = 0.80 \begin {gather*} \frac {3 x}{4} + \frac {e^{2 x e^{\frac {2}{x}} + 3 + e^{4}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________