Optimal. Leaf size=22 \[ 3 \left (-e^{\frac {e}{5-x}}+x-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6688, 2230, 2209} \begin {gather*} -3 x^2+3 x-3 e^{\frac {e}{5-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2209
Rule 2230
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3-\frac {3 e^{\frac {-5-e+x}{-5+x}}}{(-5+x)^2}-6 x\right ) \, dx\\ &=3 x-3 x^2-3 \int \frac {e^{\frac {-5-e+x}{-5+x}}}{(-5+x)^2} \, dx\\ &=3 x-3 x^2-3 \int \frac {e^{1-\frac {e}{-5+x}}}{(-5+x)^2} \, dx\\ &=-3 e^{\frac {e}{5-x}}+3 x-3 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.86 \begin {gather*} -3 \left (e^{\frac {e}{5-x}}+(-1+x) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.76, size = 45, normalized size = 2.05 \begin {gather*} -3 \, {\left ({\left (x^{2} - x\right )} e - {\left (x - 5\right )} e^{\left (-\frac {{\left (x - 5\right )} \log \left (-x + 5\right ) - x + e + 5}{x - 5}\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 39, normalized size = 1.77 \begin {gather*} -3 \, {\left (x - 5\right )}^{2} {\left (\frac {9 \, e^{3}}{x - 5} + \frac {e^{\left (-\frac {e}{x - 5} + 3\right )}}{{\left (x - 5\right )}^{2}} + e^{3}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 1.00
method | result | size |
risch | \(-3 x^{2}+3 x -3 \,{\mathrm e}^{-\frac {{\mathrm e}}{x -5}}\) | \(22\) |
default | \(3 x -3 \,{\mathrm e}^{-1} {\mathrm e}^{1-\frac {{\mathrm e}}{x -5}}-3 x^{2}\) | \(28\) |
norman | \(\frac {18 x^{2}-3 x^{3}-3 x \,{\mathrm e}^{\frac {{\mathrm e}}{5-x}}+15 \,{\mathrm e}^{\frac {{\mathrm e}}{5-x}}-75}{x -5}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.95 \begin {gather*} -3 \, x^{2} + 3 \, x - 3 \, e^{\left (-\frac {e}{x - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 21, normalized size = 0.95 \begin {gather*} 3\,x-3\,{\mathrm {e}}^{-\frac {\mathrm {e}}{x-5}}-3\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.77 \begin {gather*} - 3 x^{2} + 3 x - 3 e^{\frac {e}{5 - x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________