Optimal. Leaf size=21 \[ e^{2 e^{-\frac {8}{3-3 \log (x)}} x^4} x \]
________________________________________________________________________________________
Rubi [F] time = 4.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) \left (8 x^4-48 x^4 \log (x)+24 x^4 \log ^2(x)+e^{-\frac {8}{-3+3 \log (x)}} \left (3-6 \log (x)+3 \log ^2(x)\right )\right )}{3-6 \log (x)+3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) \left (8 x^4-48 x^4 \log (x)+24 x^4 \log ^2(x)+e^{-\frac {8}{-3+3 \log (x)}} \left (3-6 \log (x)+3 \log ^2(x)\right )\right )}{3 (1-\log (x))^2} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) \left (8 x^4-48 x^4 \log (x)+24 x^4 \log ^2(x)+e^{-\frac {8}{-3+3 \log (x)}} \left (3-6 \log (x)+3 \log ^2(x)\right )\right )}{(1-\log (x))^2} \, dx\\ &=\frac {1}{3} \int \left (3 \exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4-\frac {8}{3 (-1+\log (x))}+\frac {8}{-3+3 \log (x)}\right )+\frac {8 \exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) x^4 \left (1-6 \log (x)+3 \log ^2(x)\right )}{(-1+\log (x))^2}\right ) \, dx\\ &=\frac {8}{3} \int \frac {\exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) x^4 \left (1-6 \log (x)+3 \log ^2(x)\right )}{(-1+\log (x))^2} \, dx+\int \exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4-\frac {8}{3 (-1+\log (x))}+\frac {8}{-3+3 \log (x)}\right ) \, dx\\ &=\frac {8}{3} \int \left (3 \exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) x^4-\frac {2 \exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) x^4}{(-1+\log (x))^2}\right ) \, dx+\int e^{2 e^{\frac {8}{3 (-1+\log (x))}} x^4} \, dx\\ &=-\left (\frac {16}{3} \int \frac {\exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) x^4}{(-1+\log (x))^2} \, dx\right )+8 \int \exp \left (2 e^{\frac {8}{-3+3 \log (x)}} x^4+\frac {8}{-3+3 \log (x)}\right ) x^4 \, dx+\int e^{2 e^{\frac {8}{3 (-1+\log (x))}} x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.21, size = 21, normalized size = 1.00 \begin {gather*} e^{2 e^{\frac {8}{3 (-1+\log (x))}} x^4} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 2.33, size = 45, normalized size = 2.14 \begin {gather*} x e^{\left (\frac {2 \, {\left (3 \, {\left (x^{4} \log \relax (x) - x^{4}\right )} e^{\left (\frac {8}{3 \, {\left (\log \relax (x) - 1\right )}}\right )} + 4\right )}}{3 \, {\left (\log \relax (x) - 1\right )}} - \frac {8}{3 \, {\left (\log \relax (x) - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (24 \, x^{4} \log \relax (x)^{2} - 48 \, x^{4} \log \relax (x) + 8 \, x^{4} + 3 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 1\right )} e^{\left (-\frac {8}{3 \, {\left (\log \relax (x) - 1\right )}}\right )}\right )} e^{\left (2 \, x^{4} e^{\left (\frac {8}{3 \, {\left (\log \relax (x) - 1\right )}}\right )} + \frac {8}{3 \, {\left (\log \relax (x) - 1\right )}}\right )}}{3 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 18, normalized size = 0.86
method | result | size |
risch | \(x \,{\mathrm e}^{2 x^{4} {\mathrm e}^{\frac {8}{3 \left (\ln \relax (x )-1\right )}}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 17, normalized size = 0.81 \begin {gather*} x e^{\left (2 \, x^{4} e^{\left (\frac {8}{3 \, {\left (\log \relax (x) - 1\right )}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.27, size = 19, normalized size = 0.90 \begin {gather*} x\,{\mathrm {e}}^{2\,x^4\,{\mathrm {e}}^{\frac {8}{3\,\ln \relax (x)-3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________