Optimal. Leaf size=25 \[ \frac {x}{4+e^{5/4}-\frac {x^2}{4+\frac {4}{x}}} \]
________________________________________________________________________________________
Rubi [F] time = 180.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 28, normalized size = 1.12 \begin {gather*} \frac {4 x (1+x)}{16+16 x-x^3+4 e^{5/4} (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4 \, {\left (x^{2} + x\right )}}{x^{3} - 4 \, {\left (x + 1\right )} e^{\frac {5}{4}} - 16 \, x - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 19, normalized size = 0.76 \begin {gather*} 4.43315613013176 \times 10^{13} \, \log \left (x + 4.88086398725330\right ) + 7.047603190249338 \times 10^{13} \, \log \left (x + 1.037246381855678\right ) + 2.25414077218928 \times 10^{15} \, \log \left (x - 5.91811036910900\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 25, normalized size = 1.00
method | result | size |
risch | \(\frac {x^{2}+x}{-\frac {x^{3}}{4}+x \,{\mathrm e}^{\frac {5}{4}}+{\mathrm e}^{\frac {5}{4}}+4 x +4}\) | \(25\) |
gosper | \(\frac {4 \left (x +1\right ) x}{-x^{3}+4 x \,{\mathrm e}^{\frac {5}{4}}+4 \,{\mathrm e}^{\frac {5}{4}}+16 x +16}\) | \(28\) |
norman | \(\frac {4 x^{2}+4 x}{-x^{3}+4 x \,{\mathrm e}^{\frac {5}{4}}+4 \,{\mathrm e}^{\frac {5}{4}}+16 x +16}\) | \(32\) |
default | \(-2 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{6}+\left (-8 \,{\mathrm e}^{\frac {5}{4}}-32\right ) \textit {\_Z}^{4}+\left (-8 \,{\mathrm e}^{\frac {5}{4}}-32\right ) \textit {\_Z}^{3}+\left (256+128 \,{\mathrm e}^{\frac {5}{4}}+16 \,{\mathrm e}^{\frac {5}{2}}\right ) \textit {\_Z}^{2}+\left (256 \,{\mathrm e}^{\frac {5}{4}}+32 \,{\mathrm e}^{\frac {5}{2}}+512\right ) \textit {\_Z} +256+128 \,{\mathrm e}^{\frac {5}{4}}+16 \,{\mathrm e}^{\frac {5}{2}}\right )}{\sum }\frac {\left (16+\textit {\_R}^{4}+2 \textit {\_R}^{3}+4 \left (4+{\mathrm e}^{\frac {5}{4}}\right ) \textit {\_R}^{2}+8 \left (4+{\mathrm e}^{\frac {5}{4}}\right ) \textit {\_R} +4 \,{\mathrm e}^{\frac {5}{4}}\right ) \ln \left (x -\textit {\_R} \right )}{-256-3 \textit {\_R}^{5}+16 \,{\mathrm e}^{\frac {5}{4}} \textit {\_R}^{3}+12 \,{\mathrm e}^{\frac {5}{4}} \textit {\_R}^{2}+64 \textit {\_R}^{3}-128 \textit {\_R} \,{\mathrm e}^{\frac {5}{4}}-16 \,{\mathrm e}^{\frac {5}{2}} \textit {\_R} +48 \textit {\_R}^{2}-128 \,{\mathrm e}^{\frac {5}{4}}-16 \,{\mathrm e}^{\frac {5}{2}}-256 \textit {\_R}}\right )\) | \(157\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 4 \, \int \frac {x^{4} + 2 \, x^{3} + 16 \, x^{2} + 4 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\frac {5}{4}} + 32 \, x + 16}{x^{6} - 32 \, x^{4} - 32 \, x^{3} + 256 \, x^{2} + 16 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\frac {5}{2}} - 8 \, {\left (x^{4} + x^{3} - 16 \, x^{2} - 32 \, x - 16\right )} e^{\frac {5}{4}} + 512 \, x + 256}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 27, normalized size = 1.08 \begin {gather*} \frac {4\,x\,\left (x+1\right )}{-x^3+\left (4\,{\mathrm {e}}^{5/4}+16\right )\,x+4\,{\mathrm {e}}^{5/4}+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.84, size = 134, normalized size = 5.36 \begin {gather*} \frac {x^{2} \left (- 660 e^{\frac {5}{2}} - 2208 e^{\frac {5}{4}} - 64 e^{\frac {15}{4}} - 2368\right ) + x \left (- 660 e^{\frac {5}{2}} - 2208 e^{\frac {5}{4}} - 64 e^{\frac {15}{4}} - 2368\right )}{x^{3} \left (592 + 16 e^{\frac {15}{4}} + 552 e^{\frac {5}{4}} + 165 e^{\frac {5}{2}}\right ) + x \left (- 4848 e^{\frac {5}{2}} - 11200 e^{\frac {5}{4}} - 916 e^{\frac {15}{4}} - 64 e^{5} - 9472\right ) - 4848 e^{\frac {5}{2}} - 11200 e^{\frac {5}{4}} - 916 e^{\frac {15}{4}} - 64 e^{5} - 9472} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________